MAT 360
 Home Work 8

Huayi Zeng
SUNY,Stony Brook
NY,U.S.A
(hzeng@math.sunysb.edu)

April 3, 2004

Problem6.3.7
Proof:
We denote these two lines as l and m, the common perpendicular is $A B$, here A in l, B in m. For any other segment $C D, C$ in l, D in m. We try our best to let $C D$ to be shorter than $A B$. So we can assume $C D$ can not intersect $A B$.
Second, we can assume that $C D$ is perpendicular to either l or m or both.
Then $A B C D$ is a Lambert quadrilateral,so by Theorem6.3.4, we can assume that $\angle A C D$ is acute.
So by Theorem6.3.5, we know that the length of $C D$ is larger than that of its opposite side, $A B$.
(In the argument above,we assume that A, B, C, D are distinct points.If $C=D$, the case will be very easy.)

Problem6.3.20
Proof:
$" \Longrightarrow "$ We denote these two lines as l and m, these two equidistance are $A B$ and $C D$, here A and C in l, B and D in m.
Obviously, we can assume that $\angle C D B$ and $\angle A B D$ are both right angles.And $A B$ does not intersect $C D$.
Let M, N be mid-points of $A C$ and $B D$. Then connect M, N.
By Theorem 3.6.4, $M N$ is perpendicular to both l and m.
$" \Longleftarrow ":$ We assume $M N$ be the common perpendicular of l and m. Here M in l, N in m.
Let $A M=M C$, here A, C are on $l .(A \neq C)$, and $A B, C D$ are perpendicular to m at B, D.
So by $S A S, A N=C N$ and $\angle A N M=\angle C N M$. Because $M N$ is perpendicular to m.So we have that $\angle A N B=\angle C N D$.
So by $A A S, \triangle A B N \cong \triangle C D N$,so $A B=C D$.
O.K.!

