
MAT331 Exercises, Spring 14 set number 9

28. (expires 4/10) A Vignère cipher can be interpreted as a Caesar-like cipher on n-vectors,
where n is the length of the key phrase. Can every affine encipherment on digraphs (two-
character codes) be interpreted as an affine matrix encipherment on 2-vectors? That is,
suppose I encode a message by affine enciphering on digraphs. Can I always get the same
crypttext from the same plaintext using an affine matrix enciphering (using a 2× 2 matrix)
on 2-vectors?
If your answer is yes, prove it. If no, give a counterexample that cannot be so interpreted.

29. (expires 4/10) It was mentioned in class that the implementation of the AffineMat cipher
(see Crypto.mw) could be adjusted to that if the shift vector b is omitted, the zero vector is
used instead. Write a version of AffineMat that does this. More specifically, change the
code so that AffineMat(text,A) works exactly the same as AffineMat(text,A,b)
where b is the appropriate zero vector. Keep in mind that A may be of any size.

30. (expires 4/10) The difficulty of breaking a cipher can be increased by inserting some ran-
dom characters (or noise) into a known part of the plain text in such a way that it will
interact with the actual text (sometimes this insertion of randomness is called “salting the
plaintext”).

As an example of this, recall that we discussed that if our character set came from an alpha-
bet of length n, we could represent blocks of k-characters as numbers base nk (for example,
in the 53-character alphabet consisting of a space, upper-case letters and lower-case letters,
the word Hi is represented by 8 + 35 · 53 = 1863 if we use 2-character blocks).

If we agree that the first character of each block will be randomly chosen (and just ignored
when we decrypt), breaking the encryption becomes much, much harder.

Modify the encryption scheme in BigAffine from Crypto.mw so that it can encrypt and
decrypt including salt as the first character of each block.

As an explicit example, we encode the string Zombie Apocalypse using the 53-character
alphabet and 3-character blocks (where the first character of each block is random noise).
The given string corresponds to the list of character codes

[26, 41, 39, 28, 35, 31, 0, 1, 42, 41, 29, 27, 38, 51, 42, 45, 31]

which, when grouped into pairs and with a random character added as salt, gives me

[116551, 80721, 88936, 2842, 117404, 77428, 145275, 128676, 1652]

(your numbers may differ by up to 53 because of the salt); viewing these as 3-graphs in-
cluding the salt, corresponds to DZoBmbBieg AIpovcaBlyspsIe. If we encrypt this us-
ing the affine encryption x 7→ 12347x+ 56890 mod 533, we get

[67005, 136439, 32930, 12092, 28729, 121189, 97219, 4118, 57985]

or MsWQdvQlKHPDCLJeGqQfhkXAChT (unless you used the same salt, your encryption
will differ significantly, but both should decrypt just fine.)

If you were able to make this work, you should be able to decrypt the string1

MWLiuWVckaMOpfHuWPgGuWlyQovqkwBwWV nLZYhrySYihTUSFqFJuGxEtvxCWNxPxstkPwkkxo

which was encrypted using salted pairs (that is, 3-character blocks including salt) from the
53-character alphabet above, and applying the affine mapping x 7→ 47x+ 31415 mod 533.

1also available as zombiecrypt.txt so you don’t have to worry about typing errors.

http://www.math.sunysb.edu/~scott/mat331.spr14/problems/catMWS.php?file=Crypto.mw
http://www.math.sunysb.edu/~scott/mat331.spr14/problems/catMWS.php?file=Crypto.mw
http://www.math.sunysb.edu/~scott/mat331.spr14/problems/zombiecrypt.txt

