MAT331 homework problems

17. (expires 18 March) Consider the differential equation $\dot{\mathbf{z}}(t)=\mathbf{F}(\mathbf{z}(t))$, where the vector $\mathbf{z}(t)=(x(t), y(t))$ and the field $\mathbf{F}(x, y)=(-y, x-y)$. Plot a few solutions. What happens to them when $t \rightarrow+\infty$? Give a "Maple-proof" that this is a general fact for every solution. [A "Maple-proof" is an argument that is rigorous once we accept Maple results as incontrovertibly true.]
18. (expires 18 March) (No Maple.) For the equation $\dot{\mathbf{z}}=\mathbf{F}(\mathbf{z}), \mathbf{z}=(x, y)$, with the vector field

$$
\mathbf{F}(x, y)=\left\langle-x\left(x^{4}+y^{4}\right)-y, x-y\left(x^{4}+y^{4}\right)\right\rangle
$$

prove that the origin is an attractor in the future, i.e., every solution verifies

$$
\lim _{t \rightarrow+\infty} \mathbf{z}(t)=0
$$

[You can ask around how to do this, but then you have to show clearly that you have understood it.]
19. (expires 18 March) We will study the Lotke-Volterra predator-prey equations: In a very simple ecosystem, at the time t (which is expressed, say, in years), there is a population of $f(t)$ foxes and $r(t)$ rabbits. The evolution of these quantities obeys the system

$$
\left\{\begin{array}{l}
\dot{f}(t)=G_{f} f(t)+E f(t) r(t) \\
\dot{r}(t)=G_{r} r(t)-E f(t) r(t)
\end{array}\right.
$$

where G_{f} and G_{r} are the growth rates for the foxes and the rabbits, respectively, in the absence of each other. E is the probability of a fatal encounter between a fox and a rabbit (normalized per number of foxes and rabbits).
First, write some words to explain why these equations make sense. Then, fix $G_{f}=0.4$, $G_{r}=2.4$ (it's notorius that rabbits have the tendency to reproduce quickly) and $E=0.01$. For a few initial conditions of your choice, plot the trajectories in the (f, r) plane (say, with $0 \leq f \leq 1000$ and $0 \leq r \leq 1000$). For the same initial conditions, plot the actual solutions too (i.e, $f(t)$ against t, and $r(t)$ against t). Write some comments interpreting how the behaviour of the solutions relates to what happens to the two species.
Finally, repeat the same procedure with $G_{f}=-1.1$. Things change substantially. Again, what is the "physical" interpretation of this?

