7. (expires 2/18) Fit the points $(-1.9,-4.7),(-0.8,1.2),(0.1,2.8),(1.4,-1.2),(1.8,-3.5)$ by means of a quadratic function $f(x)=a x^{2}+b x+c$, using the least square method. First, do this step by step, as we did in class; then, use the built-in Maple command, described in the notes. Check that the two solutions agree.
8. (expires 2/18) Fit the set of points

$$
(1.02,-4.30),(1.00,-2.12),(0.99,0.52),(1.03,2.51),(1.00,3.34),(1.02,5.30)
$$

with a line, using the least square method we used in class. You will see that this is not a good fit. Think of a better way to do the fit and use Maple to do it. Explain in your solution why you think your better way is better.
9. (expires 2/18) In this problem we will estimate the charge of the electron: If an electron of energy E is thrown into a magnetic field B, perpendicular to its velocity, its trajectory will be deflected into a circular trajectory of radius r. The relation between these three quantities is:

$$
\begin{equation*}
\operatorname{Bre}=\frac{E^{2}}{m^{2} c^{4}} \sqrt{E^{2}-m^{2} c^{4}}, \tag{1}
\end{equation*}
$$

where e and m are, respectively, the charge and the mass of the electron, and c is the speed of light. The rest mass of the electron is defined as $E_{0}=m c^{2}$, and is about equal to 8.81710^{-14} Joules. In our experimental set-up the energy of the emitted electrons is set to be $E=2.511 E_{0}$.
Use read to make Maple load and execute the commands in the file electron_data.txt, which is located in the Worksheets directory of the mat331 account. This defines a list called electron. Each element of the list is a pair of the form $\left[B_{i}, r_{i}\right]$, and these quantities are expressed in Teslas and meters. Use least square fitting to determine the best value for e. [Hint: Notice that the right hand side of (1) is just a constant-calculate it once and for all and give it a name. Then (1) is a very easy equation, which is linear in the unknown parameter e. To verify your solution: $e \approx 1.60210^{-19}$ Coulomb]. Physical constants courtesy of N.I.S.T.
10. (expires 2/18) Prove relation (1), knowing the following physical facts: In relativistic dynamics Newton's law is replaced by

$$
\begin{equation*}
F=m \frac{d}{d t}\left(\frac{v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right), \tag{2}
\end{equation*}
$$

where F is the force acting on a particle, m its mass and v, a function of time, its velocity. In the case at hand, the force exerted by a magnetic field B on an electron is $F=e v B / c$. Recall that in a circular motion the acceleration $a=d v / d t=v^{2} / r$, r being the radius of the circle. Since (1) is expressed in terms of the energy, rather than the velocity, you also need Einstein's formula,

$$
\begin{equation*}
E=\frac{m c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{3}
\end{equation*}
$$

which can be solved in terms of v.

