NOTE: Each exercise is worth 10 points and can be turned in at any time before its "expiration date". At the end of the semester, I will expect you to have turned in at least 2/5 of the exercises assigned. If you do more, I will pick your best grades. If you do less, the missing grades will be counted as zeros. Altogether, these will count the same as one project.

1. (expires 2/11) Use Maple to write $x^{5}-2 x^{4}-10 x^{3}+20 x^{2}-16 x+32$ as a product of exact linear factors. By exact, I mean you should leave any non-rational factors expressed as radicals; do not approximate terms like $\sqrt{3}$ as 1.73205 , etc.
2. (expires 2/11) Draw a graph showing both $\cos (x)$ and its fifth Taylor polynomial (that is, $1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}$) for x between -4 and 4 . What degree of Taylor polynomial seems to be needed to get good agreement in this range" Hint: use a variation of the command convert (taylor ($\cos (\mathrm{x}), \mathrm{x}, 5)$, polynom) to make this work. Think of a suitable way to demonstrate that the approximation you have taken is "good"-what is a good definition of "good" here?
3. (expires 2/18) Consider the planar curve γ defined by $x^{2} y^{3}+y^{2}+y-2 e^{x}=0$. Using only Maple, find the slope of the tangent line to the curve at $(0,1)$. Then plot the curve and the tangent line on the same graph.
Hint: you might want to use implicitplot from the library plots. You might find implicitdiff helpful, too.
4. (expires 2/18) Plot the function $f(x)=2 \sin x-x^{3}-1 / 5$, for $x \in[-4,4]$. Find all the zeros of the function with an accuracy of 20 decimal digits. Hint: See Digits, fsolve.
5. (expires 2/18) Define a Maple function g that, given a positive integer k yields the sum of the first k primes. What is k such that $g(k) \leq 100,000$ but $g(k+1)>100,000$? You might find sum and ithprime helpful.
6. (expires 2/18) Use the Taylor expansion of $\arctan x$ near the point $x=1 / \sqrt{3}$ to compute the value of π to 30 places. How many terms are needed to compute the value to 50 places?
