Solutions of Midterm II

Name:

Student I.D:

Problem 1. (25 points) Is the infinite series $\sum_{n=1}^{+\infty} \frac{1}{-1+3 n \cdot \sqrt{n}}$ convergent? (If yes, you don't need to find the value of the limit).

Answer:

We have $\frac{1}{-1+3 n \cdot \sqrt{n}}=\frac{1}{n^{3 / 2}} \cdot \frac{1}{3-\frac{1}{n^{3 / 2}}}$
Now $\frac{1}{3-\frac{1}{n^{3 / 2}}} \rightarrow \frac{1}{3}$ when $n \rightarrow+\infty$. Therefore the Comparison theorem for infinite series tells us that $\sum \frac{1}{-1+3 n \cdot \sqrt{n}}$ converges if and only if $\sum \frac{1}{n^{3 / 2}}$ converges.

Since the exponent $3 / 2>1$, we know that $\sum \frac{1}{n^{3 / 2}}$ converges and therefore our infinite series is convergent.

Problem 2. (30 points) What is $\lim _{x \rightarrow+\infty} \frac{7 x^{2}+1}{\sqrt{2 x+5}}$?

Answer:

As usual we factor by the dominant terms: $\frac{7 x^{2}+1}{\sqrt{2 x+5}}=\frac{x^{2}}{\sqrt{x}} \cdot \frac{7+\frac{1}{x^{2}}}{\sqrt{2+\frac{5}{x}}}$
Now $\lim _{x \rightarrow+\infty} \frac{7+\frac{1}{x^{2}}}{\sqrt{2+\frac{5}{x}}}=\frac{7}{\sqrt{2}}>0$, by the sum rule, the quotient rule and the square root rule.
But now the Comparison theorem for functions tells us that $f(x)=\frac{7 x^{2}+1}{\sqrt{2 x+5}}$ has a limit equal to $+\infty$ at $+\infty$ if and only if the limit of $g(x)=\frac{x^{2}}{\sqrt{x}}=x^{3 / 2}$ at $+\infty$ is equal to $+\infty$. Since this is the case, we just proved that $\lim _{x \rightarrow+\infty} \frac{7 x^{2}+1}{\sqrt{2 x+5}}=+\infty$.

Problem 3. (30 points) Use the definition of a limit (I mean use " ε, δ ")
to prove that $\lim _{x \rightarrow 3} \frac{2 x^{2}+4}{x-1}=11$.

Answer:

As usual we study the quantity $|f(x)-L|=\left|\frac{2 x^{2}+4}{x-1}-11\right|=\left|\frac{2 x^{2}+4-11 x+11}{x-1}\right|=\left|\frac{2 x-5}{x-1}\right| \cdot|x-3|$

Let us prove the existence of a small neighborhood of 3 where the quantity $\left|\frac{2 x-5}{x-1}\right|$ is bounded above by a constant. Consider the neighborhood $V=(2,4)$ of the point 3 :
then $x \in V \Rightarrow 2<x<4 \Rightarrow 4<2 x<8 \Rightarrow-1<2 x-5<3$ which implies that $-3<2 x-5<3$, but this exactly means that $|2 x-5|<3$ (observe that we are only interested in an upper bound, not a lower bound).

Similarly, $x \in V \Rightarrow 2<x<4 \Rightarrow 1<x-1<3 \Rightarrow 1<|x-1|<3 \Rightarrow \frac{1}{3}<\frac{1}{|x-1|}<1$.
If you put things together, you get that for any $x \in V$ we have:
$\left|\frac{2 x-5}{x-1}\right|<3$.
Now given $\varepsilon>0$, if we take $0<\delta$ satisfying both $\delta<1$ (because we want the δ-neighborhood of 3 to be included in V , which is the 1-neighborhood of 3) and $\delta<\frac{\varepsilon}{3}$, we will have the following: for any x such that $|x-3|<\delta$ we have that $|f(x)-11|<3 . \delta<3 \cdot \frac{\varepsilon}{3}=\varepsilon$. Thus we proved that

$$
\lim _{x \rightarrow 3} \frac{2 x^{2}+4}{x-1}=11
$$

Problem 4. (15 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that for any $x \in \mathbb{R}$, we have

$$
|f(x)-f(1)|<6 \cdot \sqrt{|x-1|} .
$$

Show that such a function f is continuous at 1. (You will get some partial credit if you recall the definition of the continuity of a function at a point).

Answer:

For any given $\varepsilon>0$, if we take $0<\delta<\left(\frac{\varepsilon}{6}\right)^{2}$, we have the following:
$|x-1|<\delta$ implies that $|f(x)-f(1)|<6 \cdot \sqrt{|x-1|}<6 \cdot \sqrt{\delta}<6 \cdot \frac{\varepsilon}{6}=\varepsilon$, but this means exactly that the function f is continuous at 1 .

