MAT319/320

Solutions to First Midterm

1. 10 points Give a careful and complete definition of what it means when we say "The limit of the sequence X is $L .{ }^{\prime \prime}$

Solution: The limit of the sequence $X=\left(x_{n}\right)$ is L if for any $\epsilon>0$, there is a natural number K_{ϵ} so that $\left|x_{n}-L\right|<\epsilon$ for all $n \geq K_{\epsilon}$.
2. 10 points Let A and B be bounded subsets of \mathbb{R}.
(a) Prove that $A \cup B$ is a bounded subset of \mathbb{R}.

Solution: Since A is bounded, there are real numbers u_{A} and l_{A} so that every element of A lies between u_{A} and l_{A}; that is, $A \subseteq\left[l_{A}, u_{A}\right]$. Similarly, there are real numbers l_{B} and u_{B} so that $B \subseteq\left[l_{B}, u_{B}\right]$.
Let $L=\inf \left(l_{A}, l_{B}\right)$, and let $U=\sup \left(u_{A}, u_{B}\right)$. Then certainly $A \subseteq[L, U]$, and also $B \subseteq[L, U]$. If $x \in A \cup B$, then $x \in A$ or $x \in B$, and so $x \in[L, U]$. Thus $A \cup B \subseteq[L, U]$, which means $A \cup B$ is bounded.
(b) Prove that $\sup (A \cup B)=\sup (\sup A$, $\sup B)$.

Solution: Let $U=\sup (\sup A, \sup B)$. We must show that for any $x \in A \cup B$, we have $x \leq U$, and we must also show that if $V<U$, then there is a $y \in A \cup B$ so that $y>V$.
The first part is nearly immediate: since $U \geq \sup A$, for every $a \in A$ we have $a \leq U$. Similarly, since $U \geq \sup B$, we have $b \leq U$ for every $b \in B$.
For the second part, note that either $U=\sup A$ or $U=\sup B$. Without loss of generality, suppose the former holds. Then since U is the supremum of A, if $V<U$, there is an $a \in A$ so that $a>V$. Since this same a is an element of $A \cup B$, we have the desired conclusion.
3. (a) 10 points Prove that for all natural numbers n, we have $2^{n} \geq n+1$.

You might find induction helpful.
Solution: First, we see that for $n=1$, we have $2=2^{1} \geq 1+1$, so the base case holds.
Now for the inductive step, we want to show that $2^{k} \geq k+1$ implies that $2^{k+1} \geq$ $k+2$. We have

$$
\begin{aligned}
2^{k+1}=2 \cdot 2^{k} & \geq 2(k+1) \quad \text { by our inductive hypothesis } \\
& =2 k+2>k+2,
\end{aligned}
$$

where we have used $k>0$ in the final step.
This shows that $2^{n} \geq n+1$ for all natural numbers n.
(b) Prove that for all natural numbers $n \geq 4$, we have $2^{n} \geq n^{2}$.

Feel free to use the result from part a, even if you couldn't do it.
Solution: First, we establish the relation for $n=4$, our base case. We have $2^{4}=16=4^{2}$, as desired.
Now we show that if $2^{k} \geq k^{2}$, then we also have $2^{k+1} \geq(k+1)^{2}$.
Unfortunately, it seems we need to establish that $2^{k} \geq 2 k+1$ first, so let's do that, again by induction. First, we see that $2^{4}=16>9=2 \cdot 4+1$. For the inductive step, we must establish that $2^{k+1} \geq 2(k+1)+1$. So

$$
\begin{aligned}
2^{k+1}=2 \cdot 2^{k} & \geq 2 \cdot(2 k+1) \quad \text { using the induction hypothesis } \\
& =4 k+2=2 k+2 k+2 .
\end{aligned}
$$

Since $k>1$, we have $2 k>2$ and so we have

$$
2 k+2 k+2>2 k+4>2(k+1)+1
$$

This is our desired result.
Now we return to our main proof:

$$
2^{k+1}=2^{k}+2^{k} \geq k^{2}+(2 k+1)=(k+1)^{2} .
$$

Here we used the induction hypothesis $\left(2^{k} \geq k^{2}\right)$ and our previous fact $\left(2^{k} \geq\right.$ $2 k+1)$.
I'm sorry that a typo in part a caused it not to be useful (although still true).
4. 10 points Consider the sequence whose $n^{\text {th }}$ term $a_{n}=\left(\frac{-1}{2}\right)^{n}$. Prove, using the definition of the limit, that the limit of this sequence is 0 .

Solution: Given $\epsilon>0$, we need to find a K so that $\left|a_{n}\right|<\epsilon$ for all $n \geq K$.
Note that from the previous problem, we know that $2^{n} \geq n+1>n$, and so if we take $K \geq 1 / \epsilon$, for any $n>K$ we will have

$$
\left|\left(\frac{-1}{2}\right)^{n}\right|=\frac{1}{2^{n}} \leq \frac{1}{n} \leq \frac{1}{1 / \epsilon}=\epsilon
$$

as desired.
5. 10 points Let $f:(0,1) \rightarrow \mathbb{R}$ have the property that $f(x)<x$ for all $x \in(0,1)$.
(a) Prove that $\sup _{x \in(0,1)} f(x) \leq 1$

Solution: Suppose not. If the supremum is greater than 1 , there must be some some $x \in(0,1)$ with $1<f(x)$. But $f(x)<x<1$, and so this is a contradiction.
(b) Is it true that $\sup _{x \in(0,1)} f(x)<1$? Prove or give a counterexample.

Solution: This is not true.
There are plenty of counterexamples, such as $f(x)=x^{2}$ or $f(x)=2 x-1$.
Let's use the second one. For $f(x)=2 x-1$, we certainly have $f(x)<x$ for all $x<1$. But the image of the interval $(0,1)$ under f is $(-1,1)$, and so $\sup f(x)=1$.

