CORRECTION OF PRACTICE MIDTERM I

Problem 1. Show by induction that for any natural number $n \ge 1$ one has $3^n > n$.

- Proof. 1. The proposition is true for n = 1 because 3 > 1.
 - 2. Assume that $3^n > n$: then $3^{n+1} > 3n = n + 2n > n + 1$ because $n \ge 1$. Therefore we proved that $3^{n+1} > n+1$.

Problem 2. Determine the set A of all x in \mathbb{R} such that |5.x+2| < 8.

Proof. |5.x+2| < 8 is equivalent to -8 < 5x+2 < 8 whic is equivalent to -10 < 5x < 6, therefore the set A is the open interval (-2, 6/5).

Problem 3. Is the set $B = \left\{\frac{1}{n^2+1}, n \in \mathbb{N}\right\}$ bounded above? bounded below? Does it have a least upper bound, a greatest lower bound?

Proof. For any $n \in \mathbb{N}$ one has $0 \leq \frac{1}{n^2+1} \leq 1$ therefore it is bounded above and below. Since it is nonempty it has a least upper bound and a greatest lower bound (by completeness of \mathbb{R}).Since 1 is an upper bound and is in the set B it is also its least upper bound.

Let's prove now that 0 is the infimum of B.Given any $\varepsilon > 0$, using the archimedean property

one can find an integer K such that $\frac{1}{K} < \varepsilon$, but then for any $n \ge K$, one has: $0 < \frac{1}{n^2 + 1} < \frac{1}{n^2} < \frac{1}{n} \le \varepsilon$ therefore $\varepsilon = 0 + \varepsilon$ is not a lower bound of B, hence 0 is the greatest lower bound of B.

Problem 4. Let $J_n = (1 - \frac{1}{n}, 2 + \frac{1}{n})$. Prove that $\bigcap_{n=1}^{\infty} J_n = [1, 2]$.

Proof. Since $[1, 2] \subset J_n$ for any n, one deduces that $[1, 2] \subset \bigcap_{n=1}^{\infty} J_n$. Let's prove the other direction: let $x \in \bigcap_{n=1}^{\infty} J_n$. We will successively prove that x < 1 and x > 2 are impossible:

Assume that x < 1. Then by the archimedean property, there is an integer K such that $\frac{1}{K} < 1$ 1-x, but this implies that $x < 1 - \frac{1}{K}$, therefore $x \notin J_K$, and thus $x \notin \bigcap_{n=1}^{\infty} J_n$.

Similarly assume that x > 2, then one can find an integer K such that $x > 2 + \frac{1}{K}$ and thus $x \notin J_K$ and we are done.

Problem 5. Prove that $\left(\lim \left(\frac{5n+3}{n+7}\right)=5\right)$.

Proof. We have $0 \le \left| \frac{5n+3}{n+7} - 5 \right| = \left| \frac{5n+3-5n-35}{n+7} \right| = \left| \frac{-32}{n+7} \right| \le \frac{32}{n}$.

Thus we can apply our criterion of convergence, because we already know that the sequence $\left(\frac{32}{n}\right)$ converges to zero.

Problem 6. Find the limit of $\sqrt{(1+\frac{1}{n^2+5}).(\frac{2n+1}{n^2+7}+2)}$.

Proof. Let's break the proof into several steps:

1.
$$\left(1+\frac{1}{n^2+5}\right)$$
 converges to 1:

Indeed, since we have $0 \leq \frac{1}{n^2+5} \leq \frac{1}{n} \to 0$, we know that $\left(\frac{1}{n^2+5}\right)$ converges to zero which gives the result.

2. $\left(\frac{2n+1}{n^2+7}+2\right)$ converges to 2: Because for any $n \ge 1$ we have $0 \le \frac{2n+1}{n^2+7} = \frac{2n}{n^2+7} + \frac{1}{n^2+7} \le \frac{2n}{n^2} + \frac{1}{n^2} \le \frac{2}{n} + \frac{1}{n} = \frac{3}{n} \to 0$ one deduces by our convergence criterion that $\left(\frac{2n+1}{n^2+7}\right)$ converges to zero, and this gives the result.

3. By the product theorem, one deduces that $(1 + \frac{1}{n^2 + 5}) \cdot (\frac{2n+1}{n^2 + 7} + 2)$ converges to 1.2 = 2. Since for any $n \in \mathbb{N}$ one has that $(1 + \frac{1}{n^2 + 5}) \cdot (\frac{2n+1}{n^2 + 7} + 2) \ge 0$ and converges to 2, one knows that $\sqrt{(1 + \frac{1}{n^2 + 5}) \cdot (\frac{2n+1}{n^2 + 7} + 2)}$ converges to $\sqrt{2}$.

г			1
L			
L			
-	-	-	