Correction of Midterm I

Problem 1. (25 points) Let $C>0$ be a real number. Show that for any natural number $n \geq 1$, one has $(1+C)^{n} \geq 1+n C$.

Proof. Proof by induction:
Let's call $\mathcal{P}(n)$ the following proposition: $(1+C)^{n} \geq 1+n C$.

1. $\mathcal{P}(1)$ is true because $1+C \geqslant 1+C$;
2. Assume that $\mathcal{P}(n)$ is true:
thus we assume that $(1+C)^{n} \geq 1+n C$. Now one has

$$
\begin{aligned}
(1+C)^{n+1} & =(1+C) \cdot(1+C)^{n} \\
& \geqslant(1+C) \cdot(1+n C)(\text { because } \mathcal{P}(n) \text { is true }) \\
& =1+n C+C+n C^{2} \\
& \geqslant 1+(n+1) C
\end{aligned}
$$

Therefore $\mathcal{P}(n+1)$ is true.
Conclusion: we proved by induction that the result is true for any integer $n \geqslant 1$.

Problem 2. (25 points) First version:

Find $\lim \left(x_{n}\right)$, where $x_{n}=\frac{1}{n+1} \sqrt{(1+2 n)(n+3)}$.

Second version:

Find $\lim \left(x_{n}\right)$, where $x_{n}=\frac{1}{n+1} \sqrt{(n+2)(3 n+1)}$.
Proof.
a) First version:(detailed solution)

For any $n \geqslant 1$, let's factor by the dominant terms under the square root:

$$
\begin{aligned}
x_{n} & =\frac{1}{n+1} \sqrt{(1+2 n)(n+3)} \\
& =\frac{1}{n+1} \sqrt{n \cdot\left(2+\frac{1}{n}\right) \cdot n\left(1+\frac{3}{n}\right)} \\
& =\frac{n}{n+1} \sqrt{\left(2+\frac{1}{n}\right)\left(1+\frac{3}{n}\right)} \\
& =\frac{n}{n(1+1 / n)} \sqrt{\left(2+\frac{1}{n}\right)\left(1+\frac{3}{n}\right)} \\
& =\frac{1}{1+1 / n} \sqrt{\left(2+\frac{1}{n}\right)\left(1+\frac{3}{n}\right)}
\end{aligned}
$$

At this point we recall that the archimedean property implies that the sequence $(1 / n)$ converges to zero. By the Sum rule, the sequence $(1+1 / n)$ converges to 1 , the sequence
$(2+1 / n)$ converges to 2 , and the sequence $(1+3 / n)$ converges to 1 . By the product rule, the sequence $(2+1 / n)(1+3 / n)$ converges to 2 . Since this last sequence is made of nonnegative terms we can apply the Square root rule and conclude that $\sqrt{\left(2+\frac{1}{n}\right)\left(1+\frac{3}{n}\right)}$ converges to $\sqrt{2}$. Finally the Quotient rule implies that $\frac{1}{1+1 / n}$ converges to 1 , and a final application of the product rule implies that $\left(x_{n}\right)$ converges to $\sqrt{2}$.
b) Second version:

Similarly,

$$
\begin{aligned}
x_{n} & =\frac{1}{n+1} \sqrt{(n+2)(3 n+1)} \\
& =\frac{n}{n+1} \sqrt{(1+2 / n)(3+1 / n)} \\
& =\frac{1}{1+1 / n} \sqrt{(1+2 / n)(3+1 / n)}
\end{aligned}
$$

From this we deduce that $\left(x_{n}\right)$ converges to $\sqrt{3}$.

Problem 3. (25 points) Working from the definition of the limit of a sequence, write a careful proof of the following statement: If $\left(x_{n}\right)$ has a limit, then that limit is unique.

Proof. See the textbook, theorem 3.1.4 Uniqueness of limits.

Problem 4. (25 points) First version:
Let $J_{n}=\left[1-\frac{1}{n^{2}}, n+1\right]$. Determine $\bigcap_{n=1}^{\infty} J_{n}$.
Second version:
Let $J_{n}=\left[1-n, 1+\frac{1}{n^{2}}\right]$. Determine $\bigcap_{n=1}^{\infty} J_{n}$.
Proof. 1. First version:let's prove that $\bigcap_{n=1}^{\infty} J_{n}=[1,2]$. Indeed, for any $n \geqslant 1$, one has

$$
1-\frac{1}{n^{2}} \leqslant 1<2 \leqslant n+1
$$

therefore for any $n \geqslant 1[1,2] \subset J_{n}$, and thus $[1,2] \subset \bigcap_{n=1}^{\infty} J_{n}$. Now for the reverse inclusion, observe that any $x>2$ is not in J_{1} so it can't be in $\bigcap_{n=1}^{\infty} J_{n}$. It remains to show that any $x<1$ cannot be in the intersection. Pick any $x<1$, we will be done if we can find a natural number $n \geqslant 1$ such that $x=1-(1-x)<1-\frac{1}{n^{2}}<1$, or equivalently such that $\frac{1}{n^{2}}<(1-x)$. But the archimedean property implies the existence of an integer n such that $n>\frac{1}{1-x}$, therefore one has $\frac{1}{n^{2}} \leqslant \frac{1}{n}<1-x$ and we are done.
2. Second version: Let's prove that $\bigcap_{n=1}^{\infty} J_{n}=[0,1]$. For the first inclusion, for any $n \geqslant 1$ one has

$$
1-n \leqslant 0<1 \leqslant 1+\frac{1}{n^{2}}
$$

Therefore we already know that $[0,1] \subset \bigcap_{n=1}^{\infty} J_{n}$. Any $x<0$ is not in J_{1} so it can't be in the intersection. It remains to prove that any $x>1$ cannot be in the intersection. In order to do this it is enough to find some natural number $n \geqslant 1$ such that the following is true $1 \leqslant 1+\frac{1}{n^{2}} \leqslant 1+\frac{1}{n}<x$, but this is a consequence of the archimedean property (because there exists a natural number $n>\frac{1}{x-1}$).

