CORRECTION OF MIDTERM I

Problem 1. (25 points) Let C > 0 be a real number. Show that for any natural number $n \ge 1$, one has $(1+C)^n \ge 1 + n C$.

Proof. Proof by induction:

Let's call $\mathcal{P}(n)$ the following proposition: $(1+C)^n \ge 1 + n C$.

- 1. $\mathcal{P}(1)$ is true because $1 + C \geqslant 1 + C$;
- 2. Assume that $\mathcal{P}(n)$ is true:

thus we assume that $(1+C)^n \ge 1+nC$. Now one has

$$(1+C)^{n+1} = (1+C) \cdot (1+C)^n$$

$$\geqslant (1+C) \cdot (1+nC) \text{ (because } \mathcal{P}(n) \text{ is true)}$$

$$= 1+nC+C+nC^2$$

$$\geqslant 1+(n+1)C$$

Therefore $\mathcal{P}(n+1)$ is true.

Conclusion: we proved by induction that the result is true for any integer $n \ge 1$.

Problem 2. (25 points) First version: Find $\lim (x_n)$, where $x_n = \frac{1}{n+1} \sqrt{(1+2n)(n+3)}$.

Second version:

Find $\lim (x_n)$, where $x_n = \frac{1}{n+1} \sqrt{(n+2)(3n+1)}$.

Proof.

a) First version:(detailed solution)

For any $n \ge 1$, let's factor by the dominant terms under the square root:

$$x_n = \frac{1}{n+1} \sqrt{(1+2n)(n+3)}$$

$$= \frac{1}{n+1} \sqrt{n \cdot \left(2 + \frac{1}{n}\right) \cdot n \left(1 + \frac{3}{n}\right)}$$

$$= \frac{n}{n+1} \sqrt{\left(2 + \frac{1}{n}\right) \left(1 + \frac{3}{n}\right)}$$

$$= \frac{n}{n(1+1/n)} \sqrt{\left(2 + \frac{1}{n}\right) \left(1 + \frac{3}{n}\right)}$$

$$= \frac{1}{1+1/n} \sqrt{\left(2 + \frac{1}{n}\right) \left(1 + \frac{3}{n}\right)}$$

At this point we recall that the archimedean property implies that the sequence (1/n)converges to zero. By the Sum rule, the sequence (1+1/n) converges to 1, the sequence

(2+1/n) converges to 2, and the sequence (1+3/n) converges to 1. By the product rule, the sequence (2+1/n)(1+3/n) converges to 2. Since this last sequence is made of nonnegative terms we can apply the Square root rule and conclude that $\sqrt{\left(2+\frac{1}{n}\right)\left(1+\frac{3}{n}\right)}$ converges to $\sqrt{2}$. Finally the Quotient rule implies that $\frac{1}{1+1/n}$ converges to 1, and a final application of the product rule implies that (x_n) converges to $\sqrt{2}$.

b) **Second version**:

Similarly,

$$x_n = \frac{1}{n+1} \sqrt{(n+2)(3n+1)}$$

$$= \frac{n}{n+1} \sqrt{(1+2/n)(3+1/n)}$$

$$= \frac{1}{1+1/n} \sqrt{(1+2/n)(3+1/n)}$$

From this we deduce that (x_n) converges to $\sqrt{3}$.

Problem 3. (25 points) Working from the definition of the limit of a sequence, write a careful proof of the following statement: If (x_n) has a limit, then that limit is unique.

Proof. See the textbook, theorem 3.1.4 Uniqueness of limits.

Problem 4. (25 points) First version:

Let $J_n = [1 - \frac{1}{n^2}, n+1]$. Determine $\bigcap_{n=1}^{\infty} J_n$.

Second version: Let $J_n = [1 - n, 1 + \frac{1}{n^2}]$. Determine $\bigcap_{n=1}^{\infty} J_n$.

1. First version: let's prove that $\bigcap_{n=1}^{\infty} J_n = [1, 2]$. Indeed, for any $n \ge 1$, one has Proof.

$$1 - \frac{1}{n^2} \le 1 < 2 \le n + 1$$

therefore for any $n \ge 1$ $[1, 2] \subset J_n$, and thus $[1, 2] \subset \bigcap_{n=1}^{\infty} J_n$. Now for the reverse inclusion, observe that any x > 2 is not in J_1 so it can't be in $\bigcap_{n=1}^{\infty} J_n$. It remains to show that any x < 1 cannot be in the intersection. Pick any x < 1, we will be done if we can find a natural number $n \ge 1$ such that $x = 1 - (1 - x) < 1 - \frac{1}{n^2} < 1$, or equivalently such that $\frac{1}{n^2} < (1 - x)$. But the archimedean property implies the existence of an integer n such that $n > \frac{1}{1-x}$, therefore one has $\frac{1}{n^2} \le \frac{1}{n} < 1 - x$ and we are done.

2. Second version: Let's prove that $\bigcap_{n=1}^{\infty} J_n = [0, 1]$. For the first inclusion, for any $n \ge 1$ one has

$$1 - n \leqslant 0 < 1 \leqslant 1 + \frac{1}{n^2}$$

Therefore we already know that $[0,1] \subset \bigcap_{n=1}^{\infty} J_n$. Any x < 0 is not in J_1 so it can't be in the intersection. It remains to prove that any x > 1 cannot be in the intersection. In order to do this it is enough to find some natural number $n \ge 1$ such that the following is true $1 \le 1 + \frac{1}{n^2} \le 1 + \frac{1}{n} < x$, but this is a consequence of the archimedean property (because there exists a natural number $n > \frac{1}{x-1}$).