In a previous class, we saw that the positive reals \mathbb{R}^+ is a vector space over a field \mathbb{F} (where \mathbb{F} is \mathbb{R} or a subfield of \mathbb{R} such as the rationals \mathbb{Q}), provided that we use multiplication in \mathbb{R}^+ for vector addition, and raise our vector to the power c for scalar multiplication by c. That is, for $\alpha, \beta \in \mathbb{R}^+$ and $c \in \mathbb{F}$, we set

 $\alpha \boxplus \beta = \alpha \beta$ and $c \boxdot \alpha = \alpha^c$

In this note, we want to demonstrate that this vector space is the same as the vector space of \mathbb{R} over \mathbb{F} (with ordinary addition and scalar multiplication). We'll continue to use \boxplus to represent vector addition in \mathbb{R}^+ , and \boxdot to represent scalar multiplication.

First, notice that if our field \mathbb{F} is the real numbers \mathbb{R} , our vector space \mathbb{R}^+ is a one-dimensional vector space, and so *must* be isomorphic to \mathbb{R} with ordinary addition (since they are both finite dimensional vector spaces over the same field and have the same dimension.)

To see that, let's find a basis for \mathbb{R}^+ . Any positive real number other than 1 will do, so let's use 2. To show that $\{2\}$ is a basis, we must prove that every other element of \mathbb{R}^+ is a linear combination of 2. That means that given any $x \in \mathbb{R}^+$, we can find a scalar $c \in \mathbb{F}$ for which

$$x = c \boxdot 2$$
 or, equivalently, $x = 2^c$.

But certainly $c = \log_2 x$ is the desired solution. Since we found one vector which spans, \mathbb{R}^+ is a one-dimensional vector space over the field \mathbb{R} .

If we use a subfield of \mathbb{R} for \mathbb{F} , then depending on which x we choose, $\log_2 x$ may or may not be an element of \mathbb{F} , and so we will need more than one element in our basis for this other vector space. For example, if $\mathbb{F} = \mathbb{Q}$, we will need an infinite basis.

The above discussion does more than show us the dimension of our vector space. It also gives us an isomorphism between \mathbb{R}^+ and \mathbb{R} . To see this, we must verify that the map \log_2 is one-to-one, onto, and linear.

- If $\log_2 x = \log_2 y$, then $2^{\log_2 x} = 2^{\log_2 y}$, and so x = y.
- For any $y \in \mathbb{R}$, we must find an $x \in \mathbb{R}^+$ so that $\log_2 x = y$. But $x = 2^y$ works for us here, so \log_2 is onto.
- At first, you might worry that the logarithm isn't a linear map. But keep in mind that it *is* linear with our unusual definition for addition and scalar multiplication. We have to show that for any $\alpha, \beta \in \mathbb{R}^+$ and for any $c \in \mathbb{F}$, we have

$$\log_2\left((c \boxdot \alpha) \boxplus \beta\right) = c \log_2 \alpha + \log_2 \beta,$$

(where on the right side we are using ordinary addition and multiplication).

To see that, we just expand:

$$\log_2 (c \boxdot \alpha \boxplus \beta) = \log_2(\alpha^c \beta,)$$

= $\log_2(\alpha^c) + \log_2(\beta)$
= $c \log_2 \alpha + \log_2(\beta)$

as desired.

Since we have an isomorphism between \mathbb{R}^+ and $\mathbb{R},$ we can think of these two vector spaces as "the same".