In a previous class, we saw that the positive reals \mathbb{R}^{+}is a vector space over a field \mathbb{F} (where \mathbb{F} is \mathbb{R} or a subfield of \mathbb{R} such as the rationals \mathbb{Q}), provided that we use multiplication in \mathbb{R}^{+}for vector addition, and raise our vector to the power c for scalar multiplication by c. That is, for $\alpha, \beta \in \mathbb{R}^{+}$and $c \in \mathbb{F}$, we set

$$
\alpha \boxplus \beta=\alpha \beta \quad \text { and } \quad c \boxtimes \alpha=\alpha^{c}
$$

In this note, we want to demonstrate that this vector space is the same as the vector space of \mathbb{R} over \mathbb{F} (with ordinary addition and scalar multiplication). We'll continue to use \boxplus to represent vector addition in \mathbb{R}^{+}, and \square to represent scalar multiplication.

First, notice that if our field \mathbb{F} is the real numbers \mathbb{R}, our vector space \mathbb{R}^{+}is a one-dimensional vector space, and so must be isomorphic to \mathbb{R} with ordinary addition (since they are both finite dimensional vector spaces over the same field and have the same dimension.)

To see that, let's find a basis for \mathbb{R}^{+}. Any positive real number other than 1 will do, so let's use 2 . To show that $\{2\}$ is a basis, we must prove that every other element of \mathbb{R}^{+}is a linear combination of 2 . That means that given any $x \in \mathbb{R}^{+}$, we can find a scalar $c \in \mathbb{F}$ for which

$$
x=c \backsim 2 \quad \text { or, equivalently, } \quad x=2^{c} .
$$

But certainly $c=\log _{2} x$ is the desired solution. Since we found one vector which spans, \mathbb{R}^{+}is a one-dimensional vector space over the field \mathbb{R}.

If we use a subfield of \mathbb{R} for \mathbb{F}, then depending on which x we choose, $\log _{2} x$ may or may not be an element of \mathbb{F}, and so we will need more than one element in our basis for this other vector space. For example, if $\mathbb{F}=\mathbb{Q}$, we will need an infinite basis.

The above discussion does more than show us the dimension of our vector space. It also gives us an isomorphism between \mathbb{R}^{+}and \mathbb{R}. To see this, we must verify that the map $\log _{2}$ is one-to-one, onto, and linear.

- If $\log _{2} x=\log _{2} y$, then $2^{\log _{2} x}=2^{\log _{2} y}$, and so $x=y$.
- For any $y \in \mathbb{R}$, we must find an $x \in \mathbb{R}^{+}$so that $\log _{2} x=y$. But $x=2^{y}$ works for us here, so $\log _{2}$ is onto.
- At first, you might worry that the logarithm isn't a linear map. But keep in mind that it is linear with our unusual definition for addition and scalar multiplication. We have to show that for any $\alpha, \beta \in \mathbb{R}^{+}$and for any $c \in \mathbb{F}$, we have

$$
\log _{2}((c \boxtimes \alpha) \boxplus \beta)=c \log _{2} \alpha+\log _{2} \beta,
$$

(where on the right side we are using ordinary addition and multiplication).

To see that, we just expand:

$$
\begin{aligned}
\log _{2}(c \boxtimes \alpha \boxplus \beta) & =\log _{2}\left(\alpha^{c} \beta,\right) \\
& =\log _{2}\left(\alpha^{c}\right)+\log _{2}(\beta) \\
& =c \log _{2} \alpha+\log _{2}(\beta)
\end{aligned}
$$

as desired.
Since we have an isomorphism between \mathbb{R}^{+}and \mathbb{R}, we can think of these two vector spaces as "the same".

