
MATH 308 Solutions to Midterm 2
1. (a)10 pts. Solve the initial value problem below for x(t) by any method except cheating.

x′′(t)− x′(t)− 6x(t) = 0, x(0) = 0, x′(0) = 10

Solution: The differential equation can be rewritten in operator form as

(D2 −D − 6I)x = 0 or (D − 3I)(D + 2I)x = 0,

so the general form of the solution is

x(t) = ae3t + be−2t.

Since x(0) = 0, we know a + b = 0. Since x′(0) = 10, we have 3a − 2b = 10. Consequently,
a = 2 and b = −2. Thus, the solution is

x(t) = 2e3t − 2e−2t.

(b)10 pts. Find the most general form of x(t) for the inhomogeneous linear equation

x′′(t)− x′(t)− 6x(t) = t

Solution: We need to find a particular solution xp. Using undetermined coefficients, we
look for a solution in the kernel of D2, that is, one of the form xp(t) = ct+ k. Since x′p(t) = c
and x′′p(t) = 0, we must have

0− c− 6(ct+ k) = t, so c = −1

6
and k = − c

6
=

1

36

Consequently, the general solution is the sum of the homogeneous solution from part (a)
and the xp. That is, the desired solution is

x(t) = ae3t + be−2t − t

6
+

1

36
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2.15 pts. Below are five second order differential equations labeled (a) through (e), and four phase
portraits labeled 1 through 4 with a number of trajectories drawn. On the line following
of each of the equations, write the letter of the corresponding phase portrait or the word
“none” if the phase portrait is not shown.

1. 2. 3. 4.

(a) x′′ + 3x = 0 (a) 3

Solution: This has characteristic polynomial r2 = −3 with eigenvalues±3i. The real-valued
solutions are of the form A sin(

√
3t) +B cos(

√
3t). Solutions are ellipses, as in #3.

(b) x′′ − sin(x)x′ + x = 0 (b) 2

Solution: This equation is not something we’ve covered explicit solutions of. However,
converting this to a system gives ẋ = y ẏ = −x + sin(x)y and spot checking vectors
shows the phase portrait to agree with #2.

(c) x′′ + 4x′ + 4x = 0 (c) 1

Solution: The characteristic polynomial is (r + 2)2, with only a single eigenvector. This
matches portrait #1.

(d) x′′ + x′ + 2x = 0 (d) none

Solution:
The characteristic polynomial has roots −1±

√
7

2
, and so the solutions

spiral into the origin. The phase portrait is not any of the ones above.

(e) x′′ − x′ − 6x = 0 (e) 4

Solution: This is the equation in problem 1, which has two eigenvectors, as in portrait #4.

3. Agent Orange is peacefully relaxing in his spaceship, the Defoliant, completely at rest.
Suddenly, an alien battlecruiser appears 5 klicks away and applies a tractor beam which
causes the Defoliant to accelerate towards it at a rate of 1 k

m2 . Fortunately, Agent Orange’s
countermeasures automatically kick in and are able to counteract the beam’s force so that
it decreases linearly to zero over the course of one minute. (Unfortunately, Agent Orange
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forgot to pick up any Tylium last time he was at the store, so his engines won’t start and
he still drifting towards the aliens.)

If y(t) is the position of the Defoliant at time t, the following differential equation holds
(with an appropriate choice of units):

y′′(t) =

{
1− t 0 ≤ t ≤ 1

0 t < 0 or t > 1
y(0) = y′(0) = 0.

(a)10 pts. Solve for y(t). You may want to use the table of Laplace transforms given earlier.

Solution: We can write the equation in terms of the Heaviside function, so we have

y′′(t) = (H0(t)−H1(t))(1− t) y(0) = y′(0) = 0

Now we apply the Laplace transform to obtain

s2L [y](s)− s · 0− 0 =

(
1

s
− 1

s2

)
+
e−s

s2

so

L [y](s) =
1

s3
− 1

s4
+
e−s

s2
.

Now we take the inverse Laplace transform to get

y(t) =
t2

2
− t3

6
+H1(t)

(t− 1)3

6
.

This can be written without the Heaviside function as

y(t) =


0 t < 0
t2

2
− t3

6
0 ≤ t ≤ 1

t
2
− 1

6
t > 1

Note that if don’t actually need to use the Heaviside function or Laplace transforms to do
this problem. Just break the problem into three time intervals.
Before the aliens appear (t < 0), his position clearly satisfies y(t) = 0.
During the one minute the tractor beam is being applied (0 ≤ t ≤ 1), his position satisfies
y′′(t) = 1− t. This is separable and can easily be solved by integrating, so y′(t) = t− t2

2
+ c1.

Since y′(0) = 0, c1 = 0. Integrating again gives y(t) = t2

2
− t3

6
+ c2, but since y(0) = 0, we

know c2 = 0. Hence y(t) = t2

2
− t3

6
in this time interval.

After that (t > 1), he drifts with a constant rate equal to his velocity at t = 1 (which is 1
2
),

plus the position at t = 1 (which is 1
3
). Consequently, his position for t > 1 is given by

t−1
2

+ 1
3
.

Putting these three together gives the same answer as we got via Laplace transforms.
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(b)5 pts. Agent Orange has a teleporter which takes exactly 10 minutes to prepare for use.
If he starts preparing immediately upon sighting the aliens, does he have time to
escape? (Justify your answer).

Solution: Using the answer from the previous part, we see that after 10 minutes, Agent
Orange has moved 5 − 1

6
klicks from his original position, so he manages to escape with

more than 150 meters to spare.

4.10 pts. Let A =

1 1 0
0 2 1
0 0 3

. Calculate eAt.

Solution: This can be done in several ways. Here’s one.

The eigenvalues ofA are 1, 2, and 3, with eigenvectors

1
0
0

,

1
1
0

, and

1/2
1
1

, respectively.

Let

U =

1 1 1/2
0 1 1
0 0 1

 , and so U−1 =

1 −1 1/2
0 1 −1
0 0 1

 .

Thus, Λ = U−1AU is a diagonal matrix, and so Λt = eΛt is easy to calculate. Now we have

eAt = UΛtU
−1 =

1 1 1/2
0 1 1
0 0 1

et 0 0
0 e2t 0
0 0 e3t

1 1 1/2
0 1 −1
0 0 1

 =

et −et − e2t et−2e2t+e3t

2

0 e2t −e2t + e3t

0 0 e3t


Here’s another way: There are functions a(t), b(t) and c(t) so that

et = a(t) + b(t) + c(t), e2t = a(t) + 2b(t) + 22c(t), e3t = a(t) + 3b(t) + 32c(t)

and eAt = a(t)I + b(t)A+ c(t)A2. Solving the equations above simultaneously gives

a(t) = 3et − 3e2t + e3t, b(t) = −5

2
et + 4e2t − 3

2
e3t, c(t) =

1

2
et − e2t +

1

2
e3t

So, we have eAt = (3et − 3e2t + e3t)I + (−5
2e
t + 4e2t − 3

2e
3t)A+ (1

2e
t − e2t + 1

2e
3t)A2. Hence

eAt =(3et − 3e2t + e3t)

1 0 0
0 1 0
0 0 1

+
−5et + 8e2t − 3e3t

2

1 1 0
0 2 1
0 0 1

+
et − 2e2t + e3t

2

1 3 1
0 4 5
0 0 9


=

et −et − e2t et−2e2t+e3t

2
0 e2t −e2t + e3t

0 0 e3t


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5.10 pts. Give the general solution to the system of differential equations

dx

dt
= x+ y

dy

dt
= 2y + z

dz

dt
= 3z

Solution: This can be rewritten as the system

ẋẏ
ż

 =

1 1 0
0 2 1
0 0 3

xy
z

, which has the solu-

tion eAtc0, where A is the matrix from the previous problem. So, we’re kinda done already.

Specifically,

x(t) = aet − b(et + e2t) + c
et − 2e2t + e3t

2
, y(t) = be2t − c(e2t − e3t), z(t) = ce3t

Note that you can do this problem without using the results of problem 4, if you like.

First, solve the third equation to get z(t) = ce3t.

Then the second equation becomes y′(t)− 2y(t) = ce3t. Using undetermined coefficents, we
must have a particular solution of the form yp = ke3t, with k satisfying 3ke3t − 2e3t = ce3t.
This means that k = c. Therefore the general solution is y(t) = Be2t + ce3t.

Using the above in the first equation gives x′(t) − x(t) = Be2t + ce3t. Again using undeter-
mined coefficients, we use a particular solution of xp = re2t + se3t, with r and s satisfying

2re2t + 3se3t − (re2t + se3t) = Be2t + ce3t

Hence r = B and s = c/2, and the general solution is x(t) = Aet +Be2t + c
2
e3t.

While this may appear to be different from before, observe that if B = b − c and A =
a− b + c, we have the same solution as via the matrix exponential method. Since a, b and c
are arbitrary constants, these agree.

Finally, you can do something sort of in between the two methods. Specifically, observe

that eigenvalues of

1 1 0
0 2 1
0 0 3

 are 1, 2, and 3, with eigenvectors

1
0
0

,

1
1
0

, and

1/2
1
1

,

respectively. Along an eigenvector v with eigenvector λ, we know that the solution will
be ceλt. Because the eigenvectors are linearly independent, we now have three linearly
independent solutions to the system. Since the dimension of the solution space is 3, the
general solution will be the sum these three solutions. Thus, the general solution must look
like

c1e
t

1
0
0

+ c2e
2t

1
1
0

+ c3e
3t

1/2
1
1


Again, this is the same answer as before.
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