MATH 308

Solutions to Midterm 1

1. Consider the differential equation

$$
\frac{d y}{d t}=t-y
$$

(a) Circle the direction field below which corresponds to this equation.

3 pts. (b) Based on your answer above, if $y(-1)=0$, circle the statement below which is true.
A. $y(2)<-1$
B. $y(2) \approx 0$
C. $y(2) \approx 1$
D. $y(2)>2$

Solution: You can see from the solution on the graph above that the solution passing through $(-1,0)$ passes close to $(2,1)$, so the correct choice is \mathbf{C}.
Alternatively, you could use Euler's method with stepsize $1: y(-1)=0$, and so $y(0) \approx$ $y(-1)+(-1-0)=-1, y(1) \approx y(0)+(0-(-1))=-1+1=0$, and $y(2) \approx y(1)+(1-0)=1$. Or, you can do part c below, and plug in $t=2$ to get $1+2 e^{-3}$, which is about 1.09957.

10 pts .
(c) Find a function $y(t)$ such that $\quad \frac{d y}{d t}=t-y \quad$ and $\quad y(-1)=0$.

Solution: Rewrite the equation as $y^{\prime}+y=t$, and then use the integrating factor $e^{\int 1 d t}=e^{t}$ to obtain

$$
\begin{aligned}
\left(y^{\prime}+y\right) e^{t} & =t e^{t} \\
\frac{d}{d t}\left(y e^{t}\right) & =t e^{t} \\
y e^{t} & =\int t e^{t} d t=t e^{t}-e^{t}+c, \quad \text { (using integration by parts) }
\end{aligned}
$$

Dividing both sides by e^{t} gives us $\quad y=t-1+c e^{-t}$.
Note that you could also have found the general solution by observing that the general solution to $y^{\prime}+y=0$ is $c e^{-t}$, and (observed from the picture above) $y=t-1$ is a particular solution to the given equation. Thus, the general solution must be $y(t)=c e^{-t}+t-1$.

Since the desired solution has $y=0$ when $t=-1$, we have $0=-2+c e$, or $c=2 / e$. Thus our solution is

$$
y(t)=t-1+2 e^{-t-1}
$$

8 pts. 2. The matrix $A=\left(\begin{array}{ccc}11 & 3 & -3 \\ 8 & 6 & -8 \\ 5 & -5 & 3\end{array}\right)$ has eigenvectors $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
Find a matrix P such that $C=P A P^{-1}$ is a diagonal matrix; your answer should list both C and P.

Solution: Since we have three eigenvalues and the image has dimension 3, the eigenvalues span the image. Thus, in the coordinate system with eigenvalues as a basis, the transformation will be represented as a diagonal matrix.
The matrix P^{-1} sends the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ to the eigenvalues. Thus

$$
P^{-1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \quad \text { and so } \quad P=\frac{1}{2}\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right)
$$

To find C, we can just calculate the eigenvalues of A :
Observe that $A\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}8 \\ 0 \\ 8\end{array}\right)$, so the eigenvalue is 8. Also, the eigenvalue for $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ is -2 , and the other eigenvalue is 14 . Consequently, $C=\left(\begin{array}{ccc}8 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 14\end{array}\right)$
Of course, you could also find C by multiplication:

$$
\begin{aligned}
C=P A P^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right) & \left(\begin{array}{ccc}
11 & 3 & -3 \\
8 & 6 & -8 \\
5 & -5 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)= \\
\left(\begin{array}{ccc}
4 & -4 & 4 \\
1 & -1 & -1 \\
7 & 7 & -7
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)= & =\left(\begin{array}{ccc}
8 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 14
\end{array}\right)
\end{aligned}
$$

3. Consider the set V consisting of cubic polynomials $p(x)$ defined on $[-1,1]$ for which $p(-1)=p(1)$.
5 pts. (a) Show that this is a subspace of the vector space $\mathcal{P}_{3}[-1,1]$ consisting of cubic polynomials defined on $[-1,1]$.

Solution: We need to confirm that if $p(x)$ and $q(x)$ are both in V, then so is $p(x)+q(x)$ and if c is any scalar, then $c p(x)$ is also in V.
Since $p \in V$, we know $p(-1)=p(1)$, and since $q \in V$ we have $q(-1)=q(1)$. But then of course $p(-1)+q(-1)=p(1)+q(1)$, so $p(x)+q(x)$ is in V. Similarly, $c p(1)=c p(-1)$, so $c p(x) \in V$.

8 pts.
(b) Find a basis for V. (You need to show it is a basis).

Solution: Note any cubic polynomial is of the form $p(x)=a x^{3}+b x^{2}+c x+d$. Since $p(1)=$ $a+b+c+d$ and $p(-1)=-a+b-c+d$, for $p(x)$ to be in V we must have $a+c=0$. Thus, every polynomial in V is of the form $a x^{3}+b x^{2}-a x+d$, and a basis for V is $\left\{1, x^{2}, x^{3}-x\right\}$. Another, equivalent way of doing this is as follows:
The dimension of V is at most 3 (since \mathcal{P}_{3} has dimension 4 , and the polynomial x is not in $V)$. This means if we find three linearly independent polynomials, these must form a basis. Note that constant functions are in V, as is x^{2}. Finally, the cubic $p(x)=x^{3}-x$ is also in V, since $p(-1)=0=p(1)$.
These three polynomials are linearly independent, since if $a\left(x^{3}-x\right)+b x^{2}+d \equiv 0$, we must have $a=b=d=0$.
Thus $\left\{1, x^{2}, x^{3}-x\right\}$ is a basis for V.

10 pts. (c) Put the inner product

$$
\langle p(x), q(x)\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

on V, and find a non-zero polynomial $r(x)$ in V which is orthogonal to the span of the set of polynomials $\left\{1, x^{2}\right\}$. (You must show your answer is indeed orthogonal to this space).

Solution: Let $p(x)=x^{3}-x$. If we subtract off the projections of $p(x)$ onto 1 and x^{2}, we will obtain the desired fuction. That is,

$$
r(x)=p(x)-\frac{\langle p(x), 1\rangle}{\langle 1,1\rangle}-\frac{\left\langle p(x), x^{2}\right\rangle}{\left\langle x^{2}, x^{2}\right\rangle} x^{2}
$$

But observe that

$$
\begin{array}{r}
\langle p(x), 1\rangle=\int_{-1}^{1} x^{3}-x d x \quad=\frac{x^{4}}{4}-\left.\frac{x^{2}}{2}\right|_{-1} ^{1}=0 \\
\left\langle p(x), x^{2}\right\rangle=\int_{-1}^{1} x^{5}-x^{3} d x=\frac{x^{6}}{6}-\left.\frac{x^{4}}{4}\right|_{-1} ^{1}=0
\end{array}
$$

This means that $x^{3}-x$ is already orthogonal to the given polynomials, so life is good. We can take $r(x)=x^{3}-x$.
4. Let $T(x, y, z)$ be the linear transformation such that

$$
T(1,0,0)=(1,1,1), \quad T(1,0,1)=(1,1,2), \quad T(1,1,1)=(3,3,5)
$$

(a) Write the matrix corresponding to T.

Solution: We need to determine $T(0,1,0)$ and $T(0,0,1)$. But because of linearity,

$$
T(0,0,1)=T(1,0,1)-T(1,0,0)=(1,1,2)-(1,1,1)=(0,0,1)
$$

and

$$
T(0,1,0)=T(1,1,1)-T(1,0,1)=(3,3,5)-(1,1,2)=(2,2,3)
$$

Thus the matrix for T is $\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right)$.
5 pts . (b) Give a basis for the image of T.

Solution: The image is the span of the columns. Since $(2,2,3)=2(1,1,1)+(0,0,1)$, we only need two of the columns in our basis. Thus $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ will do the job, (as will any two of the columns of T).

5 pts. (c) Give a basis for the kernel of T.
Solution: Since the image has dimension 2, the kernel has dimension 1. Thus, we need to find any nonzero vector v for which $T(v)=0$.
Note that $T(x, y, z)=(x+2 y, x+2 y, x+3 y+z)$, so we must have

$$
x+2 y=0, \quad \text { and } \quad x+3 y+z=0 .
$$

If (x, y, z) is in the kernel, we must have $x=-2 y$ and $y=-z$. Consequently, any vector in the kernel is in the span of $\left(\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right)$.

15 pts. 5. Find all real eigenvalues and corresponding eigenvectors for the linear transformation corresponding to the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 2 & -1 \\
4 & 0 & 3
\end{array}\right)
$$

Solution: To find the eigenvalues, we compute the characteristic polynomial:

$$
\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 0 & 0 \\
-2 & 2-\lambda & -1 \\
4 & 0 & 3-\lambda
\end{array}\right)=(1-\lambda)(2-\lambda)(3-\lambda)
$$

which has roots $\lambda \in\{1,2,3\}$. Thus, the eigenvalues are 1,2 , and 3 .
The eigenvector for 1 satisfies

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 2 & -1 \\
4 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \text { that is } \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
-2 & 1 & -1 \\
4 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Equivalently, $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, so $\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)$ is an eigenvector for 1 .
To get an eigenvector for 2 , observe that

$$
\left(\begin{array}{ccc}
1-2 & 0 & 0 \\
-2 & 2-2 & -1 \\
4 & 0 & 3-2
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
-2 & 0 & -1 \\
4 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \text { so }\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text { is an eigenvector for } 2 .
$$

Finally,

$$
\left(\begin{array}{ccc}
1-3 & 0 & 0 \\
-2 & 2-3 & -1 \\
4 & 0 & 3-3
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
-2 & -1 & -1 \\
4 & 0 & 0
\end{array}\right) \rightsquigarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \text { is an eigenvector for } 3 .
$$

