1. 10 points Suppose a is a nonzero rational number, and x is an irrational number. Prove that $a x$ is an irrational number.

Solution: For contradiction, we suppose that $a x$ were rational. Since a is rational, there are nonzero integers p and q so that $a=p / q$; furthermore, since $a x$ is rational, there are nonzero integers r and s with so that $a x=r / s$. Thus, we have

$$
a x=\frac{p}{q} x=\frac{r}{s} .
$$

Solving for x gives us

$$
x=\frac{r q}{s p} .
$$

Note that $q s \neq 0$ since both q and s are nonzero. (Note that $g c d(r q, p s)$ might not be 1 , since either r and p or q and s might have a common divisor. However, this is irrelevant: we can just reduce the fraction.)
Thus, if $a x \in \mathbb{Q}$, we have shown that $x \in \mathbb{Q}$, a contradiction.
2. 10 points Let A be a set of positive integers with no least element. Show that A must be the empty set.

Hint: Prove by induction on n that if A has no least element, then \mathbb{N}_{n} is disjoint from A for every n.

Solution:

Informally, the idea of the suggestion is that we show (by induction), that $1 \notin A$, and then $2 \notin A$, and so $3 \notin A$, and so on. Thus, no positive integer can be in A.
So, we show $\mathbb{N}_{n} \cap A=\emptyset$ by induction on n.
For the base case, take $n=1$. If $1 \in A$, then since 1 is the smallest positive integer, A would have a least element, contradicting the hypotheses. Thus $\mathbb{N}_{1} \cap A=\emptyset$.
Now we show that if $\mathbb{N}_{k} \cap A=\emptyset$, then \mathbb{N}_{k+1} is disjoint from A. Suppose A does not contain any element of \mathbb{N}_{k}. Since A has no elements of \mathbb{N}_{k} in it, every element a of A satisfies $a \geq k+1$. If $k+1 \in A$, then since $k+1 \leq a$ for every $a \in A, k+1$ is the the least element of A. Thus, since A has no least element, $k+1 \notin A$. Therefore $\mathbb{N}_{k+1} \cap A=\emptyset$, as desired.
Thus, we have shown that for every $n \in \mathbb{Z}^{+}, \mathbb{N}_{n}$ is disjoint from A. But $Z^{+}=\bigcup \mathbb{N}_{n}$, so no positive integer is an element of A. Hence A is the empty set.

Many people tried to do this by induction on $|A|$, showing that if $|A|=1$ then A has a least element, and then that if any set of size n has a least element then so does any set of size $n+1$. But this just shows that every finite set of integers has a least element, but doesn't handle the case where A is infinite.
3. (a) 5 points Carefully prove that if A and B are disjoint denumerable sets, then $A \cup B$ is also denumerable.

Solution: Since A and B are denumerable, we have

$$
A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \quad B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\},
$$

that is, we have bijections $f: \mathbb{Z}^{+} \rightarrow A$ and $g: \mathbb{Z}^{+} \rightarrow B$. What we need is to give a way to list $A \cup B$, that is, a bijection $h: \mathbb{Z}^{+} \rightarrow A \cup B$.
Note that we can't just list the elements of A followed by those of B : since A is infinite, we'll never get to B. So we take the "one for you, one for me" strategy, and alternate between the two sets, that is,

$$
A \cup B=\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right\} .
$$

More formally, we can write the bijection $h: \mathbb{Z}^{+} \rightarrow A \cup B$ as

$$
h(i)= \begin{cases}f\left(\frac{i+1}{2}\right) & \text { if } i \text { is odd } \\ g\left(\frac{i}{2}\right) & \text { if } i \text { is even }\end{cases}
$$

(b) 5 points Show that if X is an uncountable set and $A \subseteq X$ is denumerable, then the complement of A in X (that is, $X-A$) must be uncountable.
You may use the first part of this question, even if you couldn't do it
Solution: We can do this by contradiction. If $X-A$ is not uncountable, then it must be countable, that is either finite or denumerable.
If $X-A$ is denumerable, we have X expressed as the union of two denumerable sets: $X=A \cup(X-A)$, and so by the first part of the problem, X is denumerable, giving a contradiction.
Similarly, if $X-A$ is finite, since A is denumerable, their union is again denumerable, giving a contradition. (There is a theorem in the text to this effect. However, the proof is simple: If $|X-A|=n$, then we can write $X-A=$ $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$, and so $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}, a_{1}, a_{2}, a_{3}, \ldots\right\}$. More formally, we have bijections $f: \mathbb{N}_{n} \rightarrow X-A$ and $g: \mathbb{Z}^{+} \rightarrow A$, so we can form a bijection $h: \mathbb{Z}^{+} \rightarrow X$ by letting $h(i)=f(i)$ for $i \leq n$ and $h(i)=g(i-n)$ for $i>n$.)
4. Three people decide to get tacos, and the tacqueria serves five kinds of tacos: beef, chicken, pork, fish, and vegetarian. Each person orders exactly one taco.
(a) 5 points How many choices are possible if we record who selected which dish (as the waiter should)?

Solution: Each person can choose one of five types of taco, so there are $5 \cdot 5 \cdot 5=$ $5^{3}=125$ possible choices for all three.
(b) 5 points How many choices are possible if we forget who ordered which dish (as the chef might)?
Be careful, this is more complicated than it may seem at first.
Solution: Here there is a slight complication since more than one person might order the same type of taco. We just count the three cases separately.

- First, if all three get the same type of taco, there are 5 possibilities.
- If two get the same type of taco, and one gets something else, we have 5 choices for the two that are the same, and 4 choices remain for the different one. This gives us 20 possibilities.
- Finally, if all three get different types, this means we have $\binom{5}{3}=10$ possibilities.

Altogether, this gives us $5+20+10=35$ different orders from the chef's point of view.
5. (a) 7 points Let X and Y be finite sets of the same cardinality. Prove that any surjective function $f: X \rightarrow Y$ is also an injection.

Solution: Suppose $f: X \rightarrow Y$ is a surjection, and for contradiction, suppose also that f is not an injection. Then there are x_{1} and $x_{2} \in X$ so that $f\left(x_{1}\right)=f\left(x_{2}\right)$. This means that the restriction of f to $X-\left\{x_{1}\right\}$ is a surjection onto Y. But since $\left|X-\left\{x_{1}\right\}\right|<|Y|, f$ cannot be a surjection, giving a contradiction.
(b) 3 points Suppose that X and Y are infinite sets of the same cardinality. Is it still true that any surjective function $f: X \rightarrow Y$ is also injective? Prove or give a counterexample.

Solution: No, this does not hold. For example, consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x(x-1)(x+1)$. This is a surjective function $(f(x)=y$ has a solution for every choice of y), but it is not injective (since $f(0)=f(1)=f(-1)=0$).
6. 5 points What is the coefficent of x^{9} in the expansion of $(x+2)^{12}$?

Solution: We apply the binomial theorem, which tells us that the term involving x^{9} looks like

$$
\binom{12}{9} x^{9} 2^{3}=8 \frac{12!}{9!3!} x^{9}=8 \cdot 220 x^{9}=1760 x^{9}
$$

so the coefficient of x^{9} is 1760 .

