MATH 200 Solutions to Midterm 2

1. 10 points Suppose a is a nonzero rational number, and x is an irrational number. Prove that ax is an irrational number.

Solution: For contradiction, we suppose that ax were rational. Since a is rational, there are nonzero integers p and q so that a = p/q; furthermore, since ax is rational, there are nonzero integers r and s with so that ax = r/s. Thus, we have

$$ax = \frac{p}{q}x = \frac{r}{s}.$$

Solving for x gives us

$$x = \frac{rq}{sp}.$$

Note that $qs \neq 0$ since both q and s are nonzero. (Note that gcd(rq, ps) might not be 1, since either r and p or q and s might have a common divisor. However, this is irrelevant: we can just reduce the fraction.)

Thus, if $ax \in \mathbb{Q}$, we have shown that $x \in \mathbb{Q}$, a contradiction.

2. 10 points Let *A* be a set of positive integers with no least element. Show that *A* must be the empty set.

Hint: Prove by induction on *n* that if *A* has no least element, then \mathbb{N}_n is disjoint from *A* for every *n*.

Solution:

Informally, the idea of the suggestion is that we show (by induction), that $1 \notin A$, and then $2 \notin A$, and so $3 \notin A$, and so on. Thus, no positive integer can be in A.

So, we show $\mathbb{N}_n \cap A = \emptyset$ by induction on *n*.

For the base case, take n = 1. If $1 \in A$, then since 1 is the smallest positive integer, A would have a least element, contradicting the hypotheses. Thus $\mathbb{N}_1 \cap A = \emptyset$.

Now we show that if $\mathbb{N}_k \cap A = \emptyset$, then \mathbb{N}_{k+1} is disjoint from A. Suppose A does not contain any element of \mathbb{N}_k . Since A has no elements of \mathbb{N}_k in it, every element a of A satisfies $a \ge k + 1$. If $k + 1 \in A$, then since $k + 1 \le a$ for every $a \in A$, k + 1 is the the least element of A. Thus, since A has no least element, $k + 1 \notin A$. Therefore $\mathbb{N}_{k+1} \cap A = \emptyset$, as desired.

Thus, we have shown that for every $n \in \mathbb{Z}^+$, \mathbb{N}_n is disjoint from A. But $Z^+ = \bigcup \mathbb{N}_n$, so no positive integer is an element of A. Hence A is the empty set.

Many people tried to do this by induction on |A|, showing that if |A| = 1 then A has a least element, and then that if any set of size n has a least element then so does any set of size n + 1. But this just shows that every finite set of integers has a least element, but doesn't handle the case where A is infinite.

3. (a) 5 points Carefully prove that if *A* and *B* are disjoint denumerable sets, then $A \cup B$ is also denumerable.

Solution: Since *A* and *B* are denumerable, we have

$$A = \{a_1, a_2, a_3, \ldots\} \qquad B = \{b_1, b_2, b_3, \ldots\},\$$

that is, we have bijections $f : \mathbb{Z}^+ \to A$ and $g : \mathbb{Z}^+ \to B$. What we need is to give a way to list $A \cup B$, that is, a bijection $h : \mathbb{Z}^+ \to A \cup B$.

Note that we can't just list the elements of *A* followed by those of *B*: since *A* is infinite, we'll never get to *B*. So we take the "one for you, one for me" strategy, and alternate between the two sets, that is,

$$A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, \ldots\}.$$

More formally, we can write the bijection $h : \mathbb{Z}^+ \to A \cup B$ as

$$h(i) = \begin{cases} f\left(\frac{i+1}{2}\right) & \text{if } i \text{ is odd} \\ g\left(\frac{i}{2}\right) & \text{if } i \text{ is even} \end{cases}$$

(b) 5 points Show that if *X* is an uncountable set and $A \subseteq X$ is denumerable, then the complement of *A* in *X* (that is, X - A) must be uncountable. You may use the first part of this question, even if you couldn't do it

Solution: We can do this by contradiction. If X - A is not uncountable, then it must be countable, that is either finite or denumerable.

If X - A is denumerable, we have X expressed as the union of two denumerable sets: $X = A \cup (X - A)$, and so by the first part of the problem, X is denumerable, giving a contradiction.

Similarly, if X - A is finite, since A is denumerable, their union is again denumerable, giving a contradition. (There is a theorem in the text to this effect. However, the proof is simple: If |X - A| = n, then we can write $X - A = \{x_1, x_2, x_3, \ldots, x_n\}$, and so $X = \{x_1, x_2, x_3, \ldots, x_n, a_1, a_2, a_3, \ldots\}$. More formally, we have bijections $f : \mathbb{N}_n \to X - A$ and $g : \mathbb{Z}^+ \to A$, so we can form a bijection $h : \mathbb{Z}^+ \to X$ by letting h(i) = f(i) for $i \leq n$ and h(i) = g(i - n) for i > n.)

- 4. Three people decide to get tacos, and the tacqueria serves five kinds of tacos: beef, chicken, pork, fish, and vegetarian. Each person orders exactly one taco.
 - (a) 5 points How many choices are possible if we record who selected which dish (as the waiter should)?

Solution: Each person can choose one of five types of taco, so there are $5 \cdot 5 \cdot 5 = 5^3 = 125$ possible choices for all three.

(b) 5 points How many choices are possible if we forget who ordered which dish (as the chef might)?

Be careful, this is more complicated than it may seem at first.

Solution: Here there is a slight complication since more than one person might order the same type of taco. We just count the three cases separately.

- First, if all three get the same type of taco, there are 5 possibilities.
- If two get the same type of taco, and one gets something else, we have 5 choices for the two that are the same, and 4 choices remain for the different one. This gives us 20 possibilities.
- Finally, if all three get different types, this means we have $\binom{5}{3} = 10$ possibilities.

Altogether, this gives us 5 + 20 + 10 = 35 different orders from the chef's point of view.

5. (a) 7 points Let X and Y be finite sets of the same cardinality. Prove that any surjective function $f : X \to Y$ is also an injection.

Solution: Suppose $f : X \to Y$ is a surjection, and for contradiction, suppose also that f is not an injection. Then there are x_1 and $x_2 \in X$ so that $f(x_1) = f(x_2)$. This means that the restriction of f to $X - \{x_1\}$ is a surjection onto Y. But since $|X - \{x_1\}| < |Y|$, f cannot be a surjection, giving a contradiction.

(b) 3 points Suppose that *X* and *Y* are infinite sets of the same cardinality. Is it still true that any surjective function $f : X \to Y$ is also injective? Prove or give a counterexample.

Solution: No, this does not hold. For example, consider $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = x(x-1)(x+1). This is a surjective function (f(x) = y has a solution for every choice of y), but it is not injective (since f(0) = f(1) = f(-1) = 0).

6. 5 points What is the coefficient of x^9 in the expansion of $(x + 2)^{12}$?

Solution: We apply the binomial theorem, which tells us that the term involving x^9 looks like

$$\binom{12}{9}x^92^3 = 8\frac{12!}{9!3!}x^9 = 8 \cdot 220x^9 = 1760x^9$$

so the coefficient of x^9 is 1760.