## MAT141

due Wednesday, October 24

Recall that for a sequence $\left\{a_{n}\right\}$, we have $a_{n} \rightarrow L$ whenever the following holds:
For every $\epsilon>0$, there exists $K$ such that, we have $\left|a_{n}-L\right|<\epsilon$ for all $n>K$.

For each of the following variations of this definition, give an example of a sequence $\left\{a_{n}\right\}$ which satisfies the altered definition, but either does not satisfy $a_{n} \rightarrow L$ or is more restrictive.
(a) There exists $K$ such that, for every $\epsilon>0$, we have $\left|a_{n}-L\right|<\epsilon$ for all $n>K$.
(b) For all $K$, there exists $\epsilon>0$ so that we have $\left|a_{n}-L\right|<\epsilon$ for all $n>K$.
(c) There exists $\epsilon>0$ and there exists $K$ so that we have $\left|a_{n}-L\right|<\epsilon$ for all $n>K$.
(d) There exists $\epsilon>0$ so that for all $K$, we have $\left|a_{n}-L\right|<\epsilon$ for all $n>K$.
(e) For all $\epsilon>0$ and for all $K$, we have $\left|a_{n}-L\right|<\epsilon$ for all $n>K$.

