Calculus Deconstructed
 Known bugs as of date below

Z Nitecki

December 9, 2009
p. 120: In statement of Prop. 3.6.1, $\exp _{2}\left(\frac{p}{q}\right)=\sqrt[q]{p}$ should read $\exp _{2}\left(\frac{p}{q}\right)=\sqrt[q]{2^{p}}$.
p. 81: In prob. $6 \mathrm{~b}, \frac{4}{(4 n+1) \pi}$ should read $\frac{2}{(4 n+1) \pi}$
p. 81: In prob. $6 \mathrm{c}, \frac{4}{(4 n+3) \pi}$ should read $\frac{2}{(4 n+3) \pi}$
(Note: this typo is also carried in the solution manual.)
p. 81: In prob. 11, the angle-sum formula is given as

$$
\cos \left(\theta_{0}+t_{n}\right)=\cos \theta_{0} \cos t_{n}-\sin \theta_{0} \sin t_{0} .
$$

The last subscript should read n, not 0 .
p. 104: In statement of Thm. 3.4.4, " x_{0} is an accumulation point..." should read " a is an accumulation point..."
p. 124: The reference to Exercise 7 in the first line of the proof of Remark 3.6.5 is in error (there is no exercise explicitly asking for proofs of the other properties of logarithms).
p. 117: The first two lines on p. 117, as well as the first display, should read
...while the denominator approaches zero: for x slightly below $-1, x^{2}$ is slightly above 1 , so $f(x)$ is large positive, while for x slightly above $-1, f(x)$ is large negative.
Thus

$$
\lim _{x \rightarrow-1^{-}} f(x)=+\infty, \quad \lim _{x \rightarrow-1^{+}} f(x)=-\infty
$$

p. 172: In the fourth display, both instances of $f\left(y_{k}\right)$ (second and third lines) should read $f\left(x_{k}\right)$.
p. 174: In the third display, $\arcsin x$ should read $\operatorname{arcsec} x$.
p. 176: Due to a macro mishap, subscripts and function names are interchanged in two places:

- in the third display, $T_{g} b(y)$ should read $T_{b} g(y)$
- in the fifth display, $T_{h} a(x)$ should read $T_{a} h(x)$.
p. 177: Similarly, the first display should read

$$
T_{a}(g \circ f)(x)=T_{a} h(x)=T_{b} g\left(T_{a} f(x)\right)=\left(\left(T_{b} g\right) \circ\left(T_{a} f\right)\right)(x)
$$

p. 458: The correct answer to Problem 4.1.1(c) is -1 , not $-\frac{3}{2}$.
(The latter is the correct answer to (d)).
p. 141: In the third and fourth displays, $6 \triangle x+\triangle x^{2}$ should read $6 \triangle x+3 \triangle x^{2}$.
p. 146: The next-to-last display needs a closing parenthesis.
p. 459: The correct answer to Problem 4.3.2a is $y=2 \ln 2+(2+2 \ln 2)(x-\ln 2)$.
p. 211: Line 13 from bottom: "relative maximum" should read "local maximum".
p. 211: Line 9 from bottom: "still assuming $f(x)>0$ " should read "still assuming $f^{\prime}(x)>0$ "
p. 228: Line 13: the correct formulas for the derivatives are $t^{-2} f^{\prime}\left(-\frac{1}{t}\right)$ and $t^{-2} g^{\prime}\left(-\frac{1}{t}\right)$ (argument needs a minus).
p. 461: In the answer to Problem 4.7.5c, the minimized surface area with open top is achieved when $r=10 \sqrt[3]{2}$ and $h=10 \sqrt[3]{2}$ (not $h=10$). The corresponding surface area is $S=300 \pi \sqrt[3]{4}$.
p. 211: The end of the first sentence (line 3):" $f\left(x_{1}\right)<f\left(x_{2}\right)$ " should read " $f\left(x_{1}\right)<f\left(x_{2}\right)$ (resp. $\left.f\left(x_{1}\right)>f\left(x_{2}\right)\right) "$
p. 214: Fifth line after Remark 4.8.6: should read " $f^{\prime \prime}(0)=0$, but $f^{\prime} \uparrow$ everywhere."
p. 298: Sixth display should read

$$
\int\left(\sin x^{2}\right)(x d x)=\int(\sin \theta)\left(\frac{1}{2} d \theta\right)=-\frac{1}{2} \cos \theta+C=-\frac{1}{2} \cos x^{2}+C .
$$

p. 304: In Problem 2c, the last integral should read $\int e^{a x} \cos b x d x$.
p. 379: In the calculation of the third derivative of \sqrt{x}, there is a sign error which affects the following items:

- Third display should read

$$
f^{(3)}(s)=\frac{3}{8 s^{5 / 2}}
$$

(that is, no minus)

- Fourth and fifth displays should read

$$
\frac{3}{8 \cdot 9^{5}} \approx 6.35 \times 10^{-6}
$$

and

$$
\frac{3}{8 \cdot 8^{5}} \approx 1.14 \times 10^{-5} .
$$

- Sixth and seventh displays should read

$$
\frac{3}{8 \cdot 9^{5}} \frac{(80-81)^{3}}{3!}=-\frac{1}{16 \cdot 9^{5}} \approx-0.000001058<-10^{-6}
$$

and

$$
\frac{3}{8 \cdot 8^{5}} \frac{(80-81)^{3}}{3!}=-\frac{1}{2 \cdot 8^{6}} \approx-0.000001907>-2 \times 10^{-6} .
$$

- Text following this display:
...quantity between 10^{-6} and 2×10^{-6}; in particular, since it is positive, our calculation is an underestimate..
should read
...quantity between -2×10^{-6} and -10^{-6}; in particular, since it is negative, our calculation is an overestimate..
p. 409: The fourth display should read

$$
\rho(x)=\lim \frac{\left|3^{k+1} x^{k+1} /(k+2)^{2}\right|}{\left|3^{k} x^{k} /(k+1)^{2}\right|}=\lim \left[3|x| \frac{(k+1)^{2}}{(k+2)^{2}}\right]=3|x|
$$

p. 440: The last display (equation (6.14)) should read

$$
\frac{1}{z}=\frac{\bar{z}}{|z|^{2}} .
$$

