MAT 132
 Solutions to Midterm 1 (acoustic)

20 pts 1. $\int \frac{2 x-3}{x^{3}-x} d x$
Solution: We do this by partial fractions. Since $x^{3}-x=x(x-1)(x+1)$, we want to find numbers A, B, and C so that

$$
\frac{2 x-3}{x(x+1)(x-1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1} .
$$

Cross-multiplying, we have $A(x-1)(x+1)+B x(x+1)+C x(x-1)=2 x-3$.

$$
\begin{array}{rrl}
\text { If } x=0 \text {, we have } & -A=-3 & \text { so } A=3 \\
\text { If } x=1 \text {, we have } & 2 B=-1 & \text { so } B=-1 / 2 \\
\text { If } x=-1 \text {, we have } & 2 C=-5 & \text { so } C=-5 / 2
\end{array}
$$

This means that

$$
\int \frac{2 x-3}{x^{3}-x} d x=\int \frac{3}{x}-\frac{1 / 2}{x-1}-\frac{5 / 2}{x+1} d x=3 \ln |x|-\frac{1}{2} \ln |x-1|-\frac{5}{2} \ln |x+1|+C .
$$

20 pts 2. $\int_{1}^{6} \frac{d r}{(r-2)^{4}}$
Solution: Since $\frac{1}{(r-2)^{4}}$ becomes undefined when $r=2$, we have write the integral as the sum of two improper integrals. That is,

$$
\begin{aligned}
\int_{1}^{6} \frac{d r}{(r-2)^{4}} & =\int_{1}^{2} \frac{d r}{(r-2)^{4}}+\int_{2}^{6} \frac{d r}{(r-2)^{4}} \\
& =\lim _{t \rightarrow 2^{-}} \int_{1}^{t} \frac{d r}{(r-2)^{4}}+\lim _{t \rightarrow 2^{+}} \int_{t}^{6} \frac{d r}{(r-2)^{4}} \\
& =\left.\lim _{t \rightarrow 2^{-}} \frac{-1}{3(r-2)^{3}}\right|_{1} ^{t}+\left.\lim _{t \rightarrow 2^{+}} \frac{-1}{3(r-2)^{3}}\right|_{t} ^{6} \\
& =\lim _{t \rightarrow 2^{-}} \frac{-1}{3(t-2)^{3}}-\frac{1}{3}-\frac{1}{48}+\lim _{t \rightarrow 2^{+}} \frac{1}{3(t-2)^{3}} .
\end{aligned}
$$

However, both of the limits above are undefined, so the integral diverges.
3. $\int_{1}^{2} \frac{\sqrt{t^{2}-1}}{t} d t$

Solution: We make the substitution $t=\sec \theta$, and $\operatorname{so} d t=\sec \theta \tan \theta d \theta$. Also, when $t=1$ we have $\theta=0$, and when $t=2$ we have $\theta=\pi / 3$. Thus, we have

$$
\begin{aligned}
\int_{1}^{2} \frac{\sqrt{t^{2}-1}}{t} d t & =\int_{0}^{\pi / 3} \frac{\sqrt{\sec ^{2} \theta-1}}{\sec \theta} \sec \theta \tan \theta d \theta=\int_{0}^{\pi / 3} \sqrt{\tan ^{2} \theta} \tan \theta d \theta \\
& =\int_{0}^{\pi / 3} \tan ^{2} \theta d \theta=\int_{0}^{\pi / 3}\left(\sec ^{2} \theta-1\right) d \theta \\
& =\tan \theta-\left.\theta\right|_{0} ^{\pi / 3}=\tan (\pi / 3)-\frac{\pi}{3}=\sqrt{3}-\frac{\pi}{3}
\end{aligned}
$$

20 pts
4. $\int x^{5} \cos \left(x^{3}\right) d x$

Solution: First, we make the substitution $w=x^{3}$, so $d w=3 x^{2} d x$.

$$
\begin{aligned}
\int x^{5} \cos \left(x^{3}\right) d x & =\frac{1}{3} \int w \cos w d w=\frac{1}{3}\left(w \sin w-\int \sin w d w\right) \\
& =\frac{1}{3}(w \sin w+\cos w)+C=\frac{x^{3} \sin x^{3}+\cos x^{3}}{3}+C
\end{aligned}
$$

where above we used integration by parts, with $u=w$ and $d v=\cos w d w$, so $d u=d w$ and $v=\sin w$.

20 pts 5. $\int \sin ^{3}(x) \cos ^{2}(x) d x$

Solution: We use the identity $\cos ^{2} x+\sin ^{2} x=1$ to transform all but one of the $\sin x$ terms into powers of $\cos x$. So we have

$$
\int \sin ^{3}(x) \cos ^{2}(x) d x=\int\left(1-\cos ^{2} x\right) \cos ^{2} x \sin x d x
$$

Now we make the subsitution $u=\cos x$ with $d u=-\sin x d x$ to get

$$
\int\left(1-u^{2}\right) u^{2} d u=\int\left(u^{2}-u^{4}\right) d u=\frac{\cos ^{3} x}{3}-\frac{\cos ^{5} x}{5}+C
$$

6. $\int_{0}^{1} x e^{4 x} d x$

Solution: We integrate by parts, with $u=x$ and $d v=e^{4 x} d x$, so $d u=d x$ and $v=\frac{1}{4} e^{4 x}$. This gives us

$$
\int_{0}^{1} x e^{4 x} d x=\left.\frac{x}{4} e^{4 x}\right|_{0} ^{1}-\frac{1}{4} \int_{0}^{1} e^{4 x} d x=\frac{x}{4} e^{4 x}-\left.\frac{1}{16} e^{4 x}\right|_{0} ^{1}=\frac{e^{4}}{4}-\frac{e^{4}}{16}+\frac{1}{16}
$$

7. The values of a function $f(x)$ are given by the table at right.

x	-0.5	0	0.5	1	1.5	2	2.5
$f(x)$	-1	0	3	2	1	-1	1

(a) Use Simpson's rule to approximate $\int_{0}^{2} f(x) d x$.

Solution: First, observe that there are two "extra" values in the table, namely $x=$ -0.5 and $x=2.5$. If we were to include those values (as some people did), the approximation would be for $\int_{-0.5}^{2.5} f(x) d x$.
We have $\Delta x=1 / 2$, and $n=4$. Simpson's rule is given by

$$
S_{4}=\frac{1 / 2}{3}(f(0)+4 f(0.5)+2 f(1)+4 f(1.5)+f(2))=\frac{1}{6}(0+12+4+4-1)=\frac{19}{6} .
$$

(b) If you know that $-5 x^{2} \leq f^{(4)}(x) \leq 5 x^{2}$, what is the maximum error in the approximation above? ${ }^{1}$

Solution: This is just a matter of filling in the proper values into the given formula. Since $\left|f^{(4)}(x)\right| \leq 5 x^{2}$, it takes on its maximum at $x=2$, so we may use $K_{4}=5 \cdot 2^{2}=$ 20 . This means the maximum error in the above approximation is

$$
\frac{2^{5} \cdot 20}{180(4)^{4}}=\frac{1}{72}
$$

20 pts 8. Does the improper integral $\int_{2}^{\infty} \frac{x^{1 / 2}+1}{5 x-8} d x$ converge? Fully justify your answer (note that if the integral converges, you need not give its value).

Solution: No, it diverges. Note that $\frac{x^{1 / 2}+1}{5 x^{2}-8}>\frac{x^{1 / 2}+1}{5 x^{2}}>\frac{x^{1 / 2}}{5 x^{2}}>\frac{1}{5 x^{1 / 2}}$. But $\frac{1}{5} \int_{2}^{\infty} \frac{d x}{x^{1 / 2}}$ diverges, since

$$
\int_{2}^{\infty} \frac{d x}{x^{1 / 2}}=\left.\lim _{M \rightarrow \infty} 2 x^{1 / 2}\right|_{2} ^{M}=\lim _{M \rightarrow \infty} 2 \sqrt{M}+2 \sqrt{2}
$$

which diverges to $+\infty$ as $M \rightarrow \infty$. By the comparison test, the original integral diverges.

[^0]Alternatively, many people did the following instead:

$$
\begin{aligned}
\int_{2}^{\infty} \frac{x^{1 / 2}+1}{5 x-8} d x & =\int_{2}^{\infty} \frac{x^{1 / 2}}{5 x-8} d x+\int_{2}^{\infty} \frac{1}{5 x-8} d x \\
& =\int_{2}^{\infty} \frac{x^{1 / 2}}{5 x-8} d x+\lim _{M \rightarrow \infty} \frac{1}{5} \ln |5 M-8|-\frac{\ln (2)}{5}
\end{aligned}
$$

Since the integral in the last term is positive and the limit diverges to $+\infty$, the original integral must diverge. This method is, in fact, equivalent to comparison with $\int_{2}^{\infty} \frac{d x}{5 x-4}$.

20 pts 9. Find the area lying between the two curves $x+y^{2}=0$ and $x+y=0$

Solution: The curves in question are graphed at right. They intersect at $(0,0)$ and at $(-1,1)$: since the second curve is $y=-x$, substituting this into the first curve gives $x+x^{2}=0$, which holds when $x=0$ or $x=-1$. We can choose to integrate either with respect to x or with respect to y.
Integrating with respect to x, we rewrite the curves as

$$
y= \pm \sqrt{-x} \quad y=-x
$$

The upper curve is $y=\sqrt{-x}$ and the lower curve is $y=-x$, and the relevant x-values are $-1 \leq x \leq 0$. The resulting integral is

$$
\int_{-1}^{0} \sqrt{-x}+x d x=-\frac{2}{3}(-x)^{3 / 2}+\left.\frac{x^{2}}{2}\right|_{-1} ^{0}=-\frac{2}{3}+\frac{1}{2}=\frac{1}{6}
$$

If we choose instead to integrate with respect to y, the rightmost curve is $x=-y^{2}$ and the leftmost curve is $x=-y$, and the relevant y-values are $0 \leq y \leq 1$. So the integral is

$$
\int_{0}^{1}-y^{2}+y d y=-\frac{y^{3}}{3}+\left.\frac{y^{2}}{2}\right|_{0} ^{1}=-\frac{1}{3}+\frac{1}{2}=\frac{1}{6}
$$

[^0]: ${ }^{1}$ Feel free to use the fact that $E_{s}<\frac{(b-a)^{5}}{180 n^{4}} K_{4}$, where $K_{4}=\max \left|f^{(4)}(x)\right|$ for $a \leq x \leq b$.

