MAT132, Paper Homework 7

1. The hyperbolic sine function $\sinh(x)$ and the hyperbolic $\cosh(x)$ are related as follows:

$$\frac{d}{dx}\sinh(x) = \cosh(x) \qquad \qquad \frac{d}{dx}\cosh(x) = \sinh(x)$$
$$\sinh(0) = 0 \qquad \qquad \cosh(0) = 1$$

Use the relationship above to determine the Maclaurin series for $\sinh(x)$ and $\cosh(x)$. Hint: If $f(x) = \cosh(x)$, the above facts tell you the value of all the derivatives $f^{(n)}(0)$.

- 2. Using the series for $\cosh(x)$ and $\sinh(x)$ and the fact that $i^2 = -1$, verify that
 - $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$
 - $\sinh(x) = \frac{1}{2} (e^x e^{-x})$
 - $\cosh(x) = \cos(ix)$
- $\sinh(x) = -i\sin(ix)$