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1. The general second order homogeneous linear differential equation with constant co-
efficients looks like

Ay′′ + By′ + Cy = 0,

where y is an unknown function of the variable x, and A, B, and C are constants. If A = 0
this becomes a first order linear equation, which we already know how to solve. So we
will consider the case A 6= 0. We can divide through by A and obtain the equivalent
equation

y′′ + by′ + cy = 0

where b = B/A and c = C/A.
“Linear with constant coefficients” means that each term in the equation is a constant

times y or a derivative of y. “Homogeneous” excludes equations like y′′+ by′+ cy = f (x)
which can be solved, in certain important cases, by an extension of the methods we will
study here.

2. In order to solve this equation, we guess that there is a solution of the form

y = eλx,

where λ is an unknown constant. Why? Because it works!
We substitute y = eλx in our equation. This gives

λ2eλx + bλeλx + ceλx = 0.

Since eλx is never zero, we can divide through and get the equation

λ2 + bλ + c = 0.

Whenever λ is a solution of this equation, y = eλx will automatically be a solution of our
original differential equation, and if λ is not a solution, then y = eλx cannot solve the
differential equation. So the substitution y = eλx transforms the differential equation into
an algebraic equation!
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Example 1. Consider the differential equation

y′′ − y = 0.

Plugging in y = eλx give us the associated equation

λ2 − 1 = 0,

which factors as
(λ + 1)(λ− 1) = 0;

this equation has λ = 1 and λ = −1 as solutions. Both y = ex and y = e−x are solutions
to the differential equation y′′ − y = 0. (You should check this for yourself!)

Example 2. For the differential equation

y′′ + y′ − 2y = 0,

we look for the roots of the associated algebraic equation

λ2 + λ− 2 = 0.

Since this factors as (λ − 1)(λ + 2) = 0, we get both y = ex and y = e−2x as solutions to
the differential equation. Again, you should check that these are solutions.

3. For the general equation of the form

y′′ + by′ + cy = 0,

we need to find the roots of λ2 + bλ + c = 0, which we can do using the quadratic formula
to get

λ =
−b±

√
b2 − 4c

2
.

If the discriminant b2 − 4c is positive, then there are two solutions, one for the plus sign
and one for the minus.

This is what we saw in the two examples above.

Now here is a useful fact about linear differential equations: if y1 and y2 are solutions
of the homogeneous differential equation y′′ + by′ + cy = 0, then so is the linear combi-
nation py1 + qy2 for any numbers p and q. This fact is easy to check (just plug py1 + qy2
into the equation and regroup terms; note that the coefficients b and c do not need to
be constant for this to work. This means that for the differential equation in Example 1

(y′′ − y = 0), any function of the form

pex + qe−x where p and q are any constants
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is a solution. Indeed, while we can’t justify it here, all solutions are of this form. Similarly,
in Example 2, the general solution of

y′′ + y′ − 2y = 0

is
y = pex + qe−2x, where p and q are constants.

4. If the discriminant b2 − 4c is negative, then the equation λ2 + bλ + c = 0 has no so-
lutions, unless we enlarge the number field to include i =

√
−1, i.e. unless we work

with complex numbers. If b2 − 4c < 0, then since we can write any positive number
as a square k2, we let k2 = −(b2 − 4c). Then ik will be a square root of b2 − 4c, since
(ik)2 = i2k2 = (−1)k2 = −k2 = b2 − 4c. The solutions of the associated algebraic equa-
tion are then

λ1 =
−b + ik

2
, λ2 =

−b− ik
2

.

Example 3. If we start with the differential equation y′′ + y = 0 (so b = 0 and c = 1) the
discriminant is b2 − 4c = −4, so 2i is a square root of the discriminant and the solutions
of the associated algebraic equation are λ1 = i and λ2 = −i.

Example 4. If the differential equation is y′′ + 2y′ + 2y = 0 (so b = 2 and c = 2 and
b2 − 4c = 4− 8 = −4). In this case the solutions of the associated algebraic equation are
λ = (−2± 2i)/2, i.e. λ1 = −1 + i and λ2 = −1− i.

5. Going from the solutions of the associated algebraic equation to the solutions of the
differential equation involves interpreting eλx as a function of x when λ is a complex
number. Suppose λ has real part a and imaginary part ib, so that λ = a + ib with a and b
real numbers. Then

eλx = e(a+ib)x = eaxeibx

assuming for the moment that complex numbers can be exponentiated so as to satisfy the
law of exponents. The factor eax does not cause a problem, but what is eibx? Everything
will work out if we take

eibx = cos(bx) + i sin(bx),

and we will see later that this formula is a necessary consequence of the elementary prop-
erties of the exponential, sine and cosine functions.

6. Let us try this formula with our examples.

Example 3. For y′′ + y = 0 we found λ1 = i and λ2 = −i, so the solutions are y1 = eix

and y2 = e−ix. The formula gives us y1 = cos x + i sin x and y2 = cos x− i sin x.

Our earlier observation that if y1 and y2 are solutions of the linear differential equa-
tion, then so is the combination py1 + qy2 for any numbers p and q holds even if p and q
are complex constants.
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Using this fact with the solutions from our example, we notice that 1
2(y1 + y2) = cos x

and 1
2i (y1 − y2) = sin x are both solutions. When we are given a problem with real

coefficients it is customary, and always possible, to exhibit real solutions. Using the fact
about linear combinations again, we can say that y = p cos x + q sin x is a solution for any
p and q. This is the general solution. (It is also correct to call y = peix + qe−ix the general
solution; which one you use depends on the context.)

Example 4. y′′ + 2y′ + 2y = 0. We found λ1 = −1 + i and λ2 = −1− i. Using the formula
we have

y1 = eλ1x = e(−1+i)x = e−xeix = e−x(cos x + i sin x),

y2 = eλ2x = e(−1−i)x = e−xe−ix = e−x(cos x− i sin x).

Exactly as before we can take 1
2(y1 + y2) and 1

2i (y1 − y2) to get the real solutions e−x cos x
and e−x sin x. (Check that these functions both satisfy the differential equation!) The
general solution will be y = pe−x cos x + qe−x sin x.

7. Repeated roots. Suppose the discriminant is zero: b2 − 4c = 0. Then the “characteristic
equation” λ2 + bλ + c = 0 has one root. In this case both eλx and xeλx are solutions of the
differential equation.

Example 5. Consider the equation y′′ + 4y′ + 4y = 0. Here b = c = 4. The discriminant
is b2 − 4c = 42 − 4× 4 = 0. The only root is λ = −2. Check that both e−2x and xe−2x are
solutions. The general solution is then y = pe−2x + qxe−2x.

8. Initial Conditions. For a first-order differential equation the undetermined constant
can be adjusted to make the solution satisfy the initial condition y(0) = y0; in the same
way the p and the q in the general solution of a second order differential equation can be
adjusted to satisfy initial conditions. Now there are two: we can specify both the value
and the first derivative of the solution for some “initial” value of x.

Example 5. Suppose that for the differential equation of Example 2, y′′ + y′ − 2y = 0, we
want a solution with y(0) = 1 and y′(0) = −1. The general solution is y = pex + qe−2x,
since the two roots of the characteristic equation are 1 and −2. The method is to write
down what the initial conditions mean in terms of the general solution, and then to solve
for p and q. In this case we have

1 = y(0) = pe0 + qe−2×0 = p + q

−1 = y′(0) = pe0− 2qe−2×0 = p− 2q.

This leads to the set of linear equations p + q = 1, p− 2q = −1 with solution q = 2/3, p =
1/3. You should check that the solution

y =
1
3

ex +
2
3

e−2x
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satisfies the initial conditions.

Example 6. For the differential equation of Example 4, y′′ + 2y′ + 2y = 0, we found
the general solution y = pe−x cos x + qe−x sin x. To find a solution satisfying the initial
conditions y(0) = −2 and y′(0) = 1 we proceed as in the last example:

−2 = y(0) = pe−0 cos 0 + qe−0 sin 0 = p

1 = y′(0) = −pe−0 cos 0− pe−0 sin 0− qe−0 sin 0 + qe−0 cos 0 = −p + q.

So p = −2 and q = −1. Again check that the solution

y = −2e−x cos x− e−x sin x

satisfies the initial conditions.
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Problems cribbed from Salas-Hille-Etgen, page 1133

In exercises 1-10, find the general solution. Give the real form.

1. y′′ − 13y′ + 42y = 0.

2. y′′ + 7y′ + 3y = 0.

3. y′′ − 3y′ + 8y = 0.

4. y′′ − 12y = 0.

5. y′′ + 12y = 0.

6. y′′ − 3y′ + 9
4 y = 0.

7. 2y′′ + 3y′ = 0.

8. y′′ − y′ − 30y = 0.

9. y′′ − 4y′ + 4y = 0.

10. 5y′′ − 2y′ + y = 0.

In exercises 11-16, solve the given initial-value problem.

11. y′′ − 5y′ + 6y = 0, y(0) = 1, y′(0) = 1

12. y′′ + 2y′ + y = 0, y(2) = 1, y′(2) = 2

13. y′′ + 1
4 y = 0, y(π) = 1, y′(π) = −1

14. y′′ − 2y′ + 2y = 0, y(0) = −1, y′(0) = −1

15. y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1

16. y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2


