MAT 126
 Solutions to Midterm 2 (acoustic)

1. Determine these EASY antiderivatives. You should be able to do these very well. In these problems, no justification is needed. Remember the ' +C '.

6 pts
(a) $\int \frac{3}{x} d x$

Solution:

$$
\int \frac{3}{x} d x=3 \ln |x|+C
$$

6 pts
(b) $\int 4 \sin (x) d x$

Solution:

$$
\int 4 \sin (x) d x=-4 \cos (x)+C
$$

6 pts
(c) $\int e^{3 x} d x$

Solution:

$$
\int e^{3 x} d x=\frac{1}{3} e^{3 x}+C
$$

6 pts
(d) $\int \frac{3}{t^{2}+1} d t$

Solution:

$$
\int \frac{3}{t^{2}+1} d t=3 \arctan (t)+C
$$

6 pts
(e) $\int \frac{1}{\sqrt{1-u^{2}}} d u$

Solution:

$$
\int \frac{1}{\sqrt{1-u^{2}}} d u=\arcsin (u)+C
$$

2. In this question we tell you which method we suggest you use. Use the back of the previous page if you need more space.

15 pts
(a) Suggested method: substitution $\int \frac{z}{1+z^{2}} d z$

Solution: Make the substitution $u=1+z^{2}$, so that $d u=2 d z$, or $\frac{1}{2} d u=d z$. Then

$$
\int \frac{z}{1+z^{2}} d z=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left|1+z^{2}\right|+C
$$

Note that since $1+z^{2}>0$ for all z, the absolute value is not necessary; the answer $\frac{\ln \left(1+z^{2}\right)}{2}+C$ is fine, too.
(b) Suggested method: substitution $\int \frac{e^{\sqrt{y+2}}}{\sqrt{y+2}} d y$

Solution: Make the substitution $u=\sqrt{y+2}$. Then

$$
d u=\frac{1}{2 \sqrt{y+2}} d y \quad \text { or } \quad 2 d u=\frac{d y}{\sqrt{y+2}}
$$

Thus,

$$
\int \frac{e^{\sqrt{y+2}}}{\sqrt{y+2}} d y=2 \int e^{u} d u=2 e^{u}+C=2 e^{\sqrt{y+2}}+C
$$

(c) Suggested method: substitution $\int \frac{\ln (x)}{x} d x$

Solution: Here, we let $u=\ln (x)$ and so $d u=\frac{d x}{x}$. This means we have

$$
\int \frac{\ln (x)}{x} d x=\int u d u=\frac{u^{2}}{2}+C=\frac{(\ln (x))^{2}}{2}+C
$$

3. In this question we tell you which method we suggest you use. Use the back of the previous page if you need more space.

15 pts
(a) Suggested method: integration by parts $\int x^{5} \ln (x) d x$

Solution: Take $u=\ln (x)$ and $d v=x^{5} d x$. Then $d u=\frac{1}{x} d x$ and $v=\frac{x^{6}}{6}$. So:

$$
\int x^{5} \ln (x) d x=\frac{x^{6} \ln (x)}{6}-\frac{1}{6} \int x^{6} \cdot \frac{1}{x} d x=\frac{x^{6} \ln (x)}{6}-\frac{1}{6} \int x^{5} d x=\frac{x^{6} \ln (x)}{6}-\frac{x^{6}}{36}+C
$$

(b) Suggested method: integration by parts $\int x e^{2 x} d x$

Solution: Take $u=x$ and $d v=e^{2 x} d x$. Then $d u=d x$ and $v=\frac{1}{2} e^{2 x}$, and so we have

$$
\int x e^{2 x} d x=\frac{x}{2} e^{2 x}-\frac{1}{2} \int e^{2 x} d x=\frac{x e^{2 x}}{2}-\frac{e^{2 x}}{4}+C
$$

15 pts
(c) Suggested method: integration by parts $\int \sin (x) e^{2 x} d x$

Solution: Take $u=e^{2 x}$ and $d v=\sin (x) d x$. Then $d u=2 e^{2 x} d x$ and $v=-\cos (x)$. So we have

$$
\int \sin (x) e^{2 x} d x=-\cos (x) e^{2 x}+2 \int \cos (x) e^{2 x} d x
$$

(we have a + before the integral because we were subtracting a negative). To do the second integral, we take $u=e^{2 x}$ and $d v=\cos x d x$. Then $d u=2 e^{2 x} d x$ and $v=\sin x$. This gives us

$$
\int \sin (x) e^{2 x} d x=-\cos (x) e^{2 x}+2\left(\sin (x) e^{2 x}-2 \int \sin (x) e^{2 x} d x\right)
$$

Multiplying out gives

$$
\int \sin (x) e^{2 x} d x=-\cos (x) e^{2 x}+2 \sin (x) e^{2 x}-4 \int \sin (x) e^{2 x} d x
$$

or, equivalently,

$$
5 \int \sin (x) e^{2 x} d x=-\cos (x) e^{2 x}+2 \sin (x) e^{2 x}+C
$$

Thus, we have

$$
\int \sin (x) e^{2 x} d x=\frac{-\cos (x) e^{2 x}+2 \sin (x) e^{2 x}}{5}+C
$$

4. Determine the following antiderivatives. Use the back of the previous page if you need more space.
(a) $\int \sin ^{3}(x) d x$

Solution: We use the identity $\sin ^{2}(x)=1-\cos ^{2}(x)$ to get

$$
\int \sin ^{3}(x) d x=\int\left(1-\cos ^{2}(x)\right) \sin (x) d x
$$

Now take $u=\cos (x)$ and $d u=-\sin (x) d x$, giving

$$
\int \sin ^{3}(x) d x=-\int\left(1-u^{2}\right) d u=-u+\frac{u^{3}}{3}+C=\frac{\cos ^{3}(x)}{3}-\cos (x)+C
$$

(b) $\int \frac{1}{\sec (4 x)} d x$

Solution:

$$
\int \frac{1}{\sec (4 x)} d x=\int \cos (4 x) d x=\frac{1}{4} \sin (4 x)+C
$$

(c) $\int \frac{1}{x^{2} \sqrt{x^{2}-1}} d x$

Solution: Take $x=\sec \theta$ so $d x=\sec \theta \tan \theta d \theta$. Then we have

$$
\int \frac{1}{x^{2} \sqrt{x^{2}-1}} d x=\int \frac{\sec \theta \tan \theta d \theta}{\sec ^{2} \theta \sqrt{\sec ^{2} \theta-1}}=\int \frac{\tan \theta d \theta}{\sec \theta \sqrt{\tan ^{2} \theta}}=\int \frac{d \theta}{\sec \theta}=\int \cos \theta d \theta
$$

This means we have $\sin \theta+C$ as our answer, but of course we need the answer in terms of x. Recall that we took $x=\sec \theta$, and so $\sin \theta=\frac{\sqrt{x^{2}-1}}{x}$ (see figure). Thus, we have shown

$$
\int \frac{1}{x^{2} \sqrt{x^{2}-1}} d x=\frac{\sqrt{x^{2}-1}}{x}+C
$$

5. Evaluate these definite integrals. Use the back of the previous page if you need more space.
(a) $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1-x^{2}} d x$

Solution: We use partial fractions:

$$
\frac{1}{1-x^{2}}=\frac{A}{1+x}+\frac{B}{1-x}
$$

so $\quad 1=A(1-x)+B(1+x)$. Thus

$$
\begin{aligned}
A+B & =1 \quad-A+B=0 \quad \text { hence } A=\frac{1}{2}, B=\frac{1}{2} \\
\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1-x^{2}} d x & =\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1 / 2}{1+x}+\frac{1 / 2}{1-x} d x=\frac{1}{2} \ln |1+x|-\frac{1}{2} \ln |1-x|_{-1 / 2}^{1 / 2} \\
& =\frac{1}{2}\left[\ln \left(\frac{3}{2}\right)-\ln \left(\frac{1}{2}\right)-\ln \left(\frac{1}{2}\right)+\ln \left(\frac{3}{2}\right)\right] \\
& =\ln \left(\frac{3}{2}\right)-\ln \left(\frac{1}{2}\right)=\ln (3)
\end{aligned}
$$

(b) $\int_{-100}^{100} \frac{\sin ^{21}(x)}{1+e^{x^{2}}} d x$

Solution: Since $\frac{\sin ^{21}(x)}{1+e^{x^{2}}}$ is an odd function and the bounds are symmetric with respect to 0 , the value of the integral is 0 .
(c) $\int_{0}^{1} \frac{x}{\sqrt{4-x^{2}}} d x$

Solution: Let $u=4-x^{2}$ so that $d u=-2 x d x$. When $x=0, u=4$ and when $x=1$, $u=3$. Thus we have

$$
\int_{0}^{1} \frac{x}{\sqrt{4-x^{2}}} d x=-\int_{4}^{3} \frac{d u}{2 \sqrt{u}}=-\left.\sqrt{u}\right|_{4} ^{3}=-\sqrt{3}+\sqrt{4}=2-\sqrt{3} .
$$

6. Since $\int_{0}^{1} \frac{1}{1+x^{2}} d x=\arctan (1)=\frac{\pi}{4}$, evaluating the integral $\int_{0}^{1} \frac{4}{1+x^{2}} d x$ gives π.
(a) Use Simpson's rule with 2 intervals to estimate $\int_{0}^{1} \frac{4}{1+x^{2}} d x$.

Solution: Since there are two intervals, the width of each is $1 / 2$. Thus, Simpson's rule gives:

$$
\frac{1}{3} \cdot \frac{1}{2}(f(0)+4 f(1 / 2)+f(1))=\frac{1}{6}\left(4+4\left(\frac{4}{1+1 / 4}\right)+2\right)=\frac{94}{30} \approx 3.13333
$$

(b) How many intervals are needed to estimate $\int_{0}^{1} \frac{4}{1+x^{2}} d x=\pi$ within .0001 using the trapezoid rule? ${ }^{1}$
Solution: We use the information in the footnote. We need to determine n so that

$$
\frac{1}{12 n^{2}} K \leq .0001
$$

where K is the maximum of the absolute value of the second derivative of $4 /\left(1+x^{2}\right)$ for x between 0 and 1. Since $\left|\frac{4\left(6 x^{2}-2\right)}{\left(1+x^{2}\right)^{3}}\right|$ is a decreasing function on this interval, the maximum occurs at $x=0$, so we take $K=|-8 / 1|=8$.
To solve $\frac{8}{12 n^{2}} \leq .0001$, we multiply both sides by $10000 n^{2}$ to get

$$
\frac{80000}{12} \leq n^{2}
$$

so n is the smallest integer bigger than $\sqrt{20000 / 3} \approx 81.6$.
Thus, $n=82$.
${ }^{1}$ Use the following estimate for E_{T} using n intervals: If $\left|f^{\prime \prime}(x)\right| \leq K$ then $E_{T} \leq K \frac{(b-a)^{3}}{12 n^{2}}$.
If $f(x)=\frac{1}{1+x^{2}}$, then $f^{\prime \prime}(x)=\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}}$

