Diagnostic Spring 2016

1. Specify whether the graph in each part represents a function and if it does, specify if the function is odd, even or neither:

- 2. For the parabola $y = -x^2 + 2x + 2$, find the coordinates of the vertex, an equation of the axis of symmetry, and the x and y intercepts. Draw the graph. Label your picture properly: indicate the vertex, the axis of symmetry, and the x and y intercepts.
- 3. Let $f(x) = 5^x$, g(x) = 2x + 3. Find $f \circ g$, $g \circ f$, and $g \circ g$.
- 4. Find the domain and range for each of the following functions. Also, write each as a composition of two functions or three functions where possible (do not choose the inner most function to x. We're not looking for triviality):

(a)
$$f(x) = |x+1|$$

(b)
$$y = 3^{x+1}$$

(c)
$$f(t) = \sin(\ln(t-3))$$

- (d) $g(u) = (u+1)^{\frac{1}{4}}$
- 5. Simplify the following expressions:

(a)
$$\log_3(\sqrt{27})$$

(b) $2^{\log_{\frac{1}{2}}(\sqrt[3]{64})}$

- 6. In each of the following cases, find the domain of the given function, write it as a composition of two or three functions, and say whether the function is even, odd, or neither:
 - (a) $x + \frac{1}{x}$
 - (b) $\frac{x^3 x}{x^3 + x}$
 - (c) |x|
 - (d) $\frac{x}{|x|}$
 - (e) $\sqrt{x^4 + x^2 + 1}$
- 7. Simplify the following:
 - (a) $27^{\frac{1}{3}}$
 - (b) $1 + x^{\frac{1}{3}} + x^{\frac{2}{3}}$
 - (c) $x^{\frac{1}{3}}x^{-\frac{1}{2}}$

(d)
$$\frac{x^2 y^3}{(x^{-3} y^2)^{-1}}$$

- (d) $\frac{x^2 y^3}{(x^{-3} y^2)^{-3}}$ (e) $\left(\frac{81 x^5}{125 y^3}\right)^{\frac{1}{3}}$
- 8. Solve each of the following:
 - (a) $\log_5(x-1) = 2$
 - (b) $\log_2(8x) = 5$
 - (c) $\frac{\log_2(x)}{\log_2(3)} = 2$
 - (d) $\log_2(x+1) \log_2(x-1) = 2$
- 9. In each of the following cases, find the center of the given ellipse:
 - (a) $4x^2 + 8x + y^2 2y = 11$
 - (b) $x^2 + 2x + 4y^2 + 24y = -36$
 - (c) $9x^2 + 36x + y^2 10y + 60 = 0$
 - (d) $9x^2 54x + 4y^2 + 8y + 49 = 0$
- 10. In each of the following cases, find the following information:
 - (a) Zeroes of f.
 - (b) y-intercept.
 - (c) Sign of the function between the zeroes.
 - (d) The behavior of f as $x \to \infty$.
 - (e) Whether the function is odd, even, or neither.

- (f) Give a rough sketch of the graph illustraing all of these features.
 - i. $f(t) = t(t^2 1)$ ii. $g(x) = x^3 - 9x$ iii. $h(u) = u^4 - 1$ iv. $j(x) = x^4 - 5x^2 + 4$ v. $k(n) = n^4 - 5n^3 + 4n^2$

11. Justify/Prove the following:

- (a) $\cos^2(\theta) + \sin^2(\theta) = 1.$
- (b) $\cos(-\theta) = \cos(\theta)$
- (c) $\sin(-\theta) = -\sin(\theta)$
- (d) $\tan(-\theta) = \tan(\theta)$
- 12. Let θ be an angle such that $\frac{\pi}{2} < \theta < \pi$ and $\sin(\theta) = \frac{2}{5}$. Find $\cos(\theta)$.
- 13. In each of the following cases, convert the given degree measure of an angle to the corresponding radian measure of an angle:
 - (a) 30°
 - (b) 75°
 - (c) -120°
 - (d) 200°
 - (e) $(\frac{200}{\pi})^{\circ}$
 - (f) 285°
 - (g) -780°
 - (h) 135°
- 14. In each case, the cosine of 2θ is given and an interval of θ is given. Find a quadratic equation satisfied by $\cos\theta$ and $\sin\theta$, and then solve the equation.
 - (a) $\cos(2\theta) = \frac{\sqrt{2}}{2}, \ \theta \in [0, \frac{\pi}{2})$
 - (b) $\cos(2\theta) = \frac{3}{4}, \ \theta \in [-\frac{\pi}{2}, 0)$

(c)
$$\cos(2\theta) = \frac{1}{2}, \ \theta \in (0, \frac{\pi}{2}]$$

- (d) $\cos(2\theta) = \sqrt{2 \frac{\sqrt{2}}{2}}, \ \theta \in [0, \frac{\pi}{2}]$
- (e) $\cos(2\theta) = 1, \ \theta \in (\frac{\pi}{2}, \pi]$

15. Verify each statement:

- (a) $\cos(3\theta) = 4\cos^3\theta 3\cos\theta$
- (b) $\sin(3\theta) = -4\sin^3\theta + 3\sin\theta$

(c)
$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

(d)
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

(e) $\sec(2\theta) = \frac{\sec^2 \theta}{2 - \sec^2 \theta}$
(f) $\csc(2\theta) = \frac{1}{2} \sec \theta \csc \theta$
(g) $\frac{\sin(2\theta)}{1 + \cos(2\theta)} = \frac{1 - \cos(2\theta)}{\sin(2\theta)}$
(h) $\sin(2\theta) = \frac{2 \tan \theta}{1 + \tan^2 \theta}$
(i) $\cos(2\theta) = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$

16. Compute each of the following values (no calculator work):

(a)
$$\sin^{-1}(\frac{1}{2})$$

(b) $\cos^{-1}(\frac{1}{2})$
(c) $\tan^{-1}(\sqrt{3})$
(d) $\sin^{-1}(0)$
(e) $\cos^{-1}(0)$
(f) $\tan^{-1}(1)$
(g) $\sin^{-1}(\frac{-1}{\sqrt{2}})$
(h) $\cos^{-1}(\frac{-1}{\sqrt{2}})$
(i) $\tan^{-1}(0)$
(j) $\sin^{-1}(\frac{-\sqrt{3}}{2})$

(k)
$$\cos^{-1}(\frac{-\sqrt{3}}{2})$$

- 17. Reduce the following using methods such as polynomial long division, synthetic division, or another method you can think of:
 - (a) $\frac{2x^2+3x+1}{x}$

(b)
$$\frac{2x^2+3x+1}{x+1}$$

- (c) $\frac{x^2 + x + 1}{x^2 x + 1}$
- (d) $\frac{x^3 + x^2 + x + 1}{x^2 + x + 1}$

(a)
$$x^2 + x + 1$$

(c) $x^2 + 2x + 3$

(e)
$$\frac{x+2x+6}{3x-2}$$

18. Let $f(x) = e^{\sin(3x)}$.

- (a) Present f as a composition of two functions. (Do not choose x as one of your functions)
- (b) Present f as a composition of three functions. (Do not choose x as one of your functions)
- 19. Solve the equation $\sin(e^x) = 0$.
- 20. Show that $f(x) = e^{\cos(x)}$ is a periodic function. Find its domain, range and sketch the graph.