Diagnostic
Spring 2016

1. Specify whether the graph in each part represents a function and if it does, specify if the function is odd, even or neither:

2. For the parabola $y=-x^{2}+2 x+2$, find the coordinates of the vertex, an equation of the axis of symmetry, and the x and y intercepts. Draw the graph. Label your picture properly: indicate the vertex, the axis of symmetry, and the x and y intercepts.
3. Let $f(x)=5^{x}, g(x)=2 x+3$. Find $f \circ g, g \circ f$, and $g \circ g$.
4. Find the domain and range for each of the following functions. Also, write each as a composition of two functions or three functions where possible (do not choose the inner most function to x. We're not looking for triviality):
(a) $f(x)=|x+1|$
(b) $y=3^{x+1}$
(c) $f(t)=\sin (\ln (t-3))$
(d) $g(u)=(u+1)^{\frac{1}{4}}$
5. Simplify the following expressions:
(a) $\log _{3}(\sqrt{27})$
(b) $2^{\log _{\frac{1}{2}}(\sqrt[3]{64})}$
6. In each of the following cases, find the domain of the given function, write it as a composition of two or three functions, and say whether the function is even, odd, or neither:
(a) $x+\frac{1}{x}$
(b) $\frac{x^{3}-x}{x^{3}+x}$
(c) $|x|$
(d) $\frac{x}{|x|}$
(e) $\sqrt{x^{4}+x^{2}+1}$
7. Simplify the following:
(a) $27^{\frac{1}{3}}$
(b) $1+x^{\frac{1}{3}}+x^{\frac{2}{3}}$
(c) $x^{\frac{1}{3}} x^{-\frac{1}{2}}$
(d) $\frac{x^{2} y^{3}}{\left(x^{-3} y^{2}\right)^{-3}}$
(e) $\left(\frac{81 x^{5}}{125 y^{3}}\right)^{\frac{1}{3}}$
8. Solve each of the following:
(a) $\log _{5}(x-1)=2$
(b) $\log _{2}(8 x)=5$
(c) $\frac{\log _{2}(x)}{\log _{2}(3)}=2$
(d) $\log _{2}(x+1)-\log _{2}(x-1)=2$
9. In each of the following cases, find the center of the given ellipse:
(a) $4 x^{2}+8 x+y^{2}-2 y=11$
(b) $x^{2}+2 x+4 y^{2}+24 y=-36$
(c) $9 x^{2}+36 x+y^{2}-10 y+60=0$
(d) $9 x^{2}-54 x+4 y^{2}+8 y+49=0$
10. In each of the following cases, find the following information:
(a) Zeroes of f.
(b) y-intercept.
(c) Sign of the function between the zeroes.
(d) The behavior of f as $x \rightarrow \infty$.
(e) Whether the function is odd, even, or neither.
(f) Give a rough sketch of the graph illustraing all of these features.
i. $f(t)=t\left(t^{2}-1\right)$
ii. $g(x)=x^{3}-9 x$
iii. $h(u)=u^{4}-1$
iv. $j(x)=x^{4}-5 x^{2}+4$
v. $k(n)=n^{4}-5 n^{3}+4 n^{2}$
11. Justify/Prove the following:
(a) $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.
(b) $\cos (-\theta)=\cos (\theta)$
(c) $\sin (-\theta)=-\sin (\theta)$
(d) $\tan (-\theta)=\tan (\theta)$
12. Let θ be an angle such that $\frac{\pi}{2}<\theta<\pi$ and $\sin (\theta)=\frac{2}{5}$. Find $\cos (\theta)$.
13. In each of the following cases, convert the given degree measure of an angle to the corresponding radian measure of an angle:
(a) 30°
(b) 75°
(c) -120°
(d) 200°
(e) $\left(\frac{200}{\pi}\right)^{\circ}$
(f) 285°
(g) -780°
(h) 135°
14. In each case, the cosine of 2θ is given and an interval of θ is given. Find a quadratic equation satisfied by $\cos \theta$ and $\sin \theta$, and then solve the equation.
(a) $\cos (2 \theta)=\frac{\sqrt{2}}{2}, \theta \in\left[0, \frac{\pi}{2}\right)$
(b) $\cos (2 \theta)=\frac{3}{4}, \theta \in\left[-\frac{\pi}{2}, 0\right)$
(c) $\cos (2 \theta)=\frac{1}{2}, \theta \in\left(0, \frac{\pi}{2}\right]$
(d) $\cos (2 \theta)=\sqrt{2-\frac{\sqrt{2}}{2}}, \theta \in\left[0, \frac{\pi}{2}\right]$
(e) $\cos (2 \theta)=1, \theta \in\left(\frac{\pi}{2}, \pi\right]$
15. Verify each statement:
(a) $\cos (3 \theta)=4 \cos ^{3} \theta-3 \cos \theta$
(b) $\sin (3 \theta)=-4 \sin ^{3} \theta+3 \sin \theta$
(c) $\tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
(d) $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
(e) $\sec (2 \theta)=\frac{\sec ^{2} \theta}{2-\sec ^{2} \theta}$
(f) $\csc (2 \theta)=\frac{1}{2} \sec \theta \csc \theta$
(g) $\frac{\sin (2 \theta)}{1+\cos (2 \theta)}=\frac{1-\cos (2 \theta)}{\sin (2 \theta)}$
(h) $\sin (2 \theta)=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
(i) $\cos (2 \theta)=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$
16. Compute each of the following values (no calculator work):
(a) $\sin ^{-1}\left(\frac{1}{2}\right)$
(b) $\cos ^{-1}\left(\frac{1}{2}\right)$
(c) $\tan ^{-1}(\sqrt{3})$
(d) $\sin ^{-1}(0)$
(e) $\cos ^{-1}(0)$
(f) $\tan ^{-1}(1)$
(g) $\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
(h) $\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
(i) $\tan ^{-1}(0)$
(j) $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
(k) $\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
17. Reduce the following using methods such as polynomial long division, synthetic division, or another method you can think of:
(a) $\frac{2 x^{2}+3 x+1}{x}$
(b) $\frac{2 x^{2}+3 x+1}{x+1}$
(c) $\frac{x^{2}+x+1}{x^{2}-x+1}$
(d) $\frac{x^{3}+x^{2}+x+1}{x^{2}+x+1}$
(e) $\frac{x^{2}+2 x+3}{3 x-2}$
18. Let $f(x)=e^{\sin (3 x)}$.
(a) Present f as a composition of two functions. (Do not choose x as one of your functions)
(b) Present f as a composition of three functions. (Do not choose x as one of your functions)
19. Solve the equation $\sin \left(e^{x}\right)=0$.
20. Show that $f(x)=e^{\cos (x)}$ is a periodic function. Find its domain, range and sketch the graph.
