MATH 125

Solutions to Second Midterm(mango)

1. Compute each of the derivatives below as indicated.
(b) $f(x)=e^{2 x} \tan x$

Solution: We need both the product rule and the chain rule here:

$$
f^{\prime}(x)=2 e^{2 x} \tan x+e^{2 x} \sec ^{2} x
$$

(c) $f(x)=\frac{3 x^{3}-5 x}{\sec (\pi x)+x^{2}}$

Solution: By the quotient rule,

$$
f^{\prime}(x)=\frac{\left(9 x^{2}-5\right)\left(\sec (\pi x)+x^{2}\right)-\left(3 x^{3}-5 x\right)(\pi \sec (\pi x) \tan (\pi x)+2 x)}{\left(\sec (\pi x)+x^{2}\right)^{2}}
$$

This mess doesn't really simplify much, so why bother trying?
(d) $f(x)=\arcsin \left(e^{x}\right)$

Solution: Using the chain rule, $f^{\prime}(x)=\frac{e^{x}}{\sqrt{1-e^{2 x}}}$.
2. Calculate the indicated derivatives.
(a) $f(x)=6 x^{8}-5 x^{4}+4 x-e^{3}$.

Solution: $f^{\prime}(x)=48 x^{7}-20 x+4$.
Don't forget that e^{3} is a constant just a bit larger than 20 , so its derivative is zero.
Patcoll

4 points

4 points
(a) $\frac{d}{d \theta} \sin (2 \theta) \cos (3 \theta)$

Solution: By the product chain rules, we get $2 \cos (2 \theta) \cos (3 \theta)-3 \sin (2 \theta) \sin (3 \theta)$.
(b) Calculate the second derivative of $x^{2} e^{2 x}$ with respect to x.

Solution: If $f(x)=x^{2} e^{2 x}$, then using the product rule we get $f^{\prime}(x)=2 x e^{2 x}+2 x^{2} e^{2 x}$ or, if we want to factor it, $2\left(x+x^{2}\right) e^{2 x}$. Thus,

$$
f^{\prime \prime}(x)=2(1+2 x) e^{2 x}+4\left(x+x^{2}\right) e^{2 x}=\left(2+8 x+4 x^{2}\right) e^{2 x} .
$$

You could also leave it as $2 e^{2 x}+4 x e^{2 x}+8 x e^{2 x}+4 x^{2} e^{2 x}$.

4 points
(c) $\frac{d^{10}}{d t^{10}} 11 t^{9}$.

Solution: If you didn't immediately realize that the tenth derivative of a ninth degree polynomial is zero, maybe you'd see the pattern once you started taking derivatives:
$f(t)=11 t^{9}, f^{\prime}(t)=9 \cdot 11 t^{8}, f^{\prime \prime}(t)=8 \cdot 9 \cdot 11 t^{7}, f^{\prime \prime \prime}(t)=7 \cdot 8 \cdot 9 \cdot 11 t^{6}, \ldots, f^{(9)}(t)=1 \cdot 2 \cdot 3 \cdot \cdots 8 \cdot 9 \cdot 11$.
Since the $9^{\text {th }}$ derivative is a constant, $\quad \frac{d^{10}}{d t^{10}} 11 t^{9}=0$.
3. Let $f(x)=x \ln \left(x^{4}\right)$.
(a) Calculate $f^{\prime}(x)$.

Solution: Just apply the product rule and the chain rule to get

$$
f^{\prime}(x)=\ln \left(x^{4}\right)+\frac{x}{x^{4}} \cdot 4 x^{3}=\ln \left(x^{4}\right)+4
$$

(b) For what values of x is $f(x)$ decreasing? If there are none, write "NONE"; otherwise, describe all such x.

Solution: The function will be decreasing when $f^{\prime}(x)<0$. From the first part, we have $f^{\prime}(x)=\ln \left(x^{4}\right)+4$, but remember that $\ln \left(x^{4}\right)=4 \ln |x|$, so $f^{\prime}(x)=4(\ln |x|+1)$. (Since the power of x inside the \log is even, both $x<0$ and $x>0$ are in the domain, so we need to include the absolute value.)

Now, we want to know when $4(\ln |x|+1)<0$. This happens exactly when $\ln |x|<-1$. Exponentiating both sides gives

$$
|x|<e^{-1} \quad \text { or } \quad-\frac{1}{e}<x<\frac{1}{e}
$$

At right is a graph of $f(x)$, and you can see that this corresponds to what we found.

4. Find the slope of the line tangent to the curve $\sin (x y)=x^{2}+y^{2}-\pi$ at the point $(0, \sqrt{\pi})$.

Solution: To do this, we use implicit differentiation.
Differentiating both sides with respect to x (remembering that y is some unknown function of x and using y^{\prime} to represent the derivative of y with respect to x), we get

$$
\cos (x y)\left(y+x y^{\prime}\right)=2 x+2 y y^{\prime}
$$

Now, we can subsitute $x=0$ and $y=\sqrt{\pi}$, then solve for y^{\prime}.

$$
\cos (0)(\sqrt{\pi})=0+2 \sqrt{\pi} y^{\prime} \quad \text { so } \quad 1 / 2=y^{\prime}
$$

Thus, the slope at the desired point is $1 / 2$.
The set of points satisfying $\sin (x y)=x^{2}+y^{2}-\pi$ is shown at
 right, together with the desired tangent line.
5. Jimi Chiu makes "designer" shoes ${ }^{1}$ that he sells at $\$ 250$ a pair. He knows that the number of pairs of shoes he sells is a function of the price he charges; let's denote this by $N(p)$, where p is the price per pair. Market research tells him that $N^{\prime}(250)$ is about -20 ; that is, if he raises the price by one dollar, he should expect to sell 20 fewer pairs. The amount of revenue $R(p)$ he makes at a given price will be given by $R(p)=p \cdot N(p)$.
If he typically sells 2000 pairs of shoes at $\$ 250$ each, what is $R^{\prime}(250)$? Should he raise the price a little?

Solution: $N(p)$ is some unknown function, but we know that $N(250)=2000$ (since he sells 2000 pairs at a price of $\$ 250$ each, and we know that $N^{\prime}(250)=-20$.
We want to calculate $R^{\prime}(250)$ where $R(p)=p \cdot N(p)$. By the product rule, we have $R^{\prime}(p)=N(p)+p N^{\prime}(p)$, so

$$
R^{\prime}(250)=2000+250 \cdot(-20)=2000-5000=-3000
$$

Since R^{\prime} is negative, he will lose revenue if he raises the price. So he shouldn't charge more- in fact, he should lower the price to make more money.

[^0]6. Let $f(x)=4 x^{3}-x+1$. Find the equation of a line which passes through the origin and is also tangent to the curve $y=f(x)$ at some point (a, b)

Solution:

While you don't need the graph to do this problem, at right is a graph of what we are trying to solve, to help you keep in mind what is going on. We are looking for the blue line.

There are a couple of ways to do this problem; here's one. Note that since the line we are looking for goes through the origin, it is of the form $y=m x$. Since this line is also tangent to the graph of $f(x)$ at some point (a, b), we have

$$
m=f^{\prime}(a)=12 a^{2}-1
$$

and $b=f(a)=4 a^{3}-a+1$.

So we have to find a so that

$$
\begin{aligned}
4 a^{3}-a+1 & =\left(12 a^{2}-1\right)(a) \\
4 a^{3}-a+1 & =12 a^{3}-a \\
1 & =8 a^{3}
\end{aligned}
$$

Thus, $a=1 / 2$, and so $m=12 / 4-1=2$.

The line we want is $y=2 x$.

10 points 7. Suppose $y=(1+\cos (x))^{(1+\sin (x))}$. What is $\frac{d y}{d x}$ when $x=\pi / 2$ and $y=1$?

Solution: To do this, we use logarithmic differentiation. Taking the log of both sides gives us

$$
\ln (y)=\ln \left((1+\cos (x))^{(1+\sin (x))}\right)=(1+\sin x) \ln (1+\cos x)
$$

and then differentiating both sides with respect to x gives us

$$
\frac{y^{\prime}}{y}=(\cos x) \ln (1+\cos x)+(1+\sin x) \cdot \frac{1}{1+\cos x} \cdot(-\sin x) .
$$

Substituting $x=\pi / 2$ and $y=1$ (remembering that $\cos (\pi / 2)=0$ and $\sin (\pi / 2)=1$) yields

$$
\frac{y^{\prime}}{1}=0 \cdot \ln (1+0)+(1+1)\left(\frac{1}{1+0}\right)(-1)=0-2=-2 .
$$

A graph of the function with a tangent line at the desired point is shown below.

[^0]: ${ }^{1}$ No relation to Jimmy Choo shoes, unless you don't look very closely. Mr. Chiu is also fond of Rollexx watches.

