MAT 125 Solutions to Second Midterm, Vers. 2

1. For each of the functions $f(x)$ given below, find $\left.f^{\prime}(x)\right)$.

4 points

4 points

4 points

4 points

4 points
2. Compute each of the following derivatives as indicated:
(a) $\frac{d}{d t}\left[e^{\sin ^{2}(t)}\right]$

Solution: The chain rule gives

$$
e^{\sin ^{2}(t)} \cdot 2 \sin (t) \cdot(-\cos (t))=-2 \sin (t) \cos (t) e^{\sin ^{2}(t)}
$$

4 points
(d) $f(x)=\ln (\tan (x))$

Solution: Another chain rule problem:

$$
f^{\prime}(x)=\frac{1}{\tan (x)} \cdot \sec ^{2}(x)=\frac{\cos (x)}{\sin (x) \cos ^{2}(x)}=\sec (x) \csc (x)
$$

Solution: Applying the chain rule, we get

$$
\frac{1}{1+(\sqrt{1+3 x})^{2}} \cdot \frac{1}{2}(1+3 x)^{-1 / 2} \cdot(3)=\frac{3}{2(2+3 x) \sqrt{1+3 x}}
$$

Solution: Apply the product rule, with a chain rule for the $\sin (2 x)$ term to get

$$
f^{\prime}(x)=2 \cos (2 x) \cos (x)-\sin (2 x) \sin (x)
$$

(c) $f(x)=\arctan (\sqrt{1+3 x})$
(b) $\frac{d}{d u}\left[u^{5} \ln (\sin (u))\right]$

Solution: Using the product rule (and the chain rule), we obtain

$$
5 u^{4} \ln (\sin (u))+u^{5} \frac{1}{\sin (u)} \cos (u)=u^{4}(5 \ln (\sin (u))+u \cot (u))
$$

(c) $\frac{d}{d z}[\sqrt{1+\sqrt{1+z}}]$

Solution: View this as $\frac{d}{d z}\left[\left(1+(1+z)^{1 / 2}\right)^{1 / 2}\right]$ and apply the chain rule:

$$
\frac{1}{2}\left(1+(1+z)^{1 / 2}\right)^{-\frac{1}{2}} \cdot \frac{1}{2}(1+z)^{-\frac{1}{2}}=\frac{1}{4 \sqrt{1+z} \sqrt{1+\sqrt{1+z}}}
$$

(d) $\frac{d}{d x}\left[e^{x}-\pi^{2}\right]$

Solution: Remembering that π^{2} is a constant, the derivative is just e^{x}.
3. The curve $x^{2}-x y+y^{2}=16$ is an ellipse centered at the origin.
(a) Find the points where this ellipse intersects the x-axis.

Solution: Since we are looking for points on the x-axis, this is where $y=0$. Substituting $y=0$ into the equation of the ellipse gives

$$
x^{2}=16 \quad \text { so } \quad x= \pm 4
$$

6 points (b) Find the slope of the tangent line to this ellipse at each of the points from part (a).
Solution: Using implicit differentiation, we obtain $2 x-\left(y+x \frac{d y}{d x}\right)+2 y \frac{d y}{d x}=0$.
Substituting $y=0$ and $x= \pm 4$ yields

$$
\pm 8= \pm 4 \frac{d y}{d x}
$$

and so the slope at either point is 2 .
5 points (c) Locate all points on this ellipse where the line tangent to the curve is horizontal.
Solution: To do this, we need to find all points (x, y) where the slope of the tangent line is zero. From part (b), we have

$$
2 x-\left(y+x \frac{d y}{d x}\right)+2 y \frac{d y}{d x}=0
$$

solving this for $d y / d x$ gives

$$
\frac{d y}{d x}=\frac{y-2 x}{2 y-x}
$$

Thus, the slope of the tangent line will be zero when $y=2 x$.
Now we go back to the equation of the ellipse $\left(x^{2}-x y+y^{2}=16\right)$ and substitute $y=2 x$ to obtain

$$
x^{2}-x(2 x)+(2 x)^{2}=16, \quad \text { or equivalently, } \quad 3 x^{2}=16
$$

Thus, $x= \pm 4 / \sqrt{3}$. Since $y=2 x$, we have $y= \pm 8 / \sqrt{3}$. Thus, the two points in question are

$$
\left(\frac{4}{\sqrt{3}}, \frac{8}{\sqrt{3}}\right) \quad \text { and } \quad\left(-\frac{4}{\sqrt{3}},-\frac{8}{\sqrt{3}}\right)
$$

4. Let $f(x)=x \ln (2 x)$
(a) Calculate $f^{\prime}(x)$

Solution: Applying the product rule (and the chain rule) gives

$$
f^{\prime}(x)=\ln (2 x)+x \frac{1}{2 x} \cdot 2=\ln (2 x)+1
$$

4 points (b) Calculate $f^{\prime \prime}(x)$
Solution: Taking the derivative of the above, we get $f^{\prime \prime}(x)=\frac{1}{x}$.
3 points (c) For what values of x is $f(x)$ increasing?
Solution: As we all know, $f(x)$ is increasing when $f^{\prime}(x)>0$. Thus, using our answer from part (a) tells us that we need to know when

$$
\ln (2 x)+1>0 \quad \text { or, equivalently, } \quad \ln (2 x)>-1
$$

Exponentiating both sides gives $2 x>e^{-1}$, so we know that

$$
f(x) \text { is increasing for } x>\frac{1}{2 e} .
$$

(d) For what values of x is $f(x)$ concave down?

Solution: We need to determine when $f^{\prime \prime}(x)<0$. From part (b), this means

$$
\frac{1}{x}<0 \quad \text { that is, } \quad x<0
$$

However, remember that $\ln (3 x)$ is only defined for $x>0$. Thus $f(x)$ is concave up for all values of x in its domain. There are no values of x where $f(x)$ is concave down.

This question uses material we didn't cover yet. Such things won't be on our midterm.
12 points 5. The volume V of a spherical ball is growing at a constant rate of $1 \mathrm{~m}^{3} / \mathrm{min}$. Determine the rate of increase of its surface area S (in $\mathrm{m}^{2} / \mathrm{min}$) when its radius r is equal to 1 meter. Perhaps you might find it helpful to recall that the volume of a sphere of radius r is given by $V=\frac{4}{3} \pi r^{3}$, and its surface area is $S=4 \pi r^{2}$.

Solution: The statement that the volume is growing at $1 \frac{m^{3}}{\min }$, we have $\frac{d V}{d t}=1$. We are asked to find the rate of increase of the surface area when the radius is 1 , that is, $\frac{d S}{d t}$ when $r=1$.
We know that

$$
V=\frac{4}{3} \pi r^{3} \quad \text { so } \quad \frac{d V}{d t}=4 \pi r \frac{d r}{d t}
$$

When $r=1$, the equation on the right gives us $1=4 \pi(1) \frac{d r}{d t}$, so $\frac{d r}{d t}=\frac{1}{4 \pi}$.
Now we use

$$
S=4 \pi r^{2} \quad \text { to get } \quad \frac{d S}{d t}=8 \pi r \frac{d r}{d t}
$$

Since $r=1$ and $\frac{d r}{d t}=\frac{1}{4 \pi}$, we have

$$
\frac{d S}{d t}=8 \pi \frac{1}{4 \pi}=2
$$

This question uses material we didn't cover yet. Such things won't be on our midterm.
12 points 6. Use a linear approximation to estimate the value of $\arcsin (.52)$

Solution: We use the following two facts:

- $f(x) \approx f(a)+f^{\prime}(a)(x-a)$ for x near a,
- $\arcsin (.5)=\pi / 6$.

Thus, if we take $a=\frac{1}{2}$ and $f(x)=\arcsin (x)$, we can approximate $f(.52)$ using the tangent line.
Recalling that $f^{\prime}(a)=\frac{1}{\sqrt{1-a^{2}}}$, we have

$$
f^{\prime}(1 / 2)=\frac{1}{\sqrt{1-(1 / 2)^{2}}}=\frac{1}{\sqrt{3 / 4}}=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}} .
$$

Thus, we have

$$
\arcsin (.52) \approx \frac{\pi}{6}+\frac{2}{\sqrt{3}}(.52-.5)=\frac{\pi}{6}+\frac{0.04}{\sqrt{3}}
$$

If you prefer to phrase this in terms of differentials, you get the same answer. The differential of $\arcsin (x)$ is $d y=\frac{d x}{\sqrt{1-x^{2}}}$. Taking $x=\frac{1}{2}$ and $d x=.02$, we have

$$
\arcsin (.52) \approx \arcsin (1 / 2)+d y=\frac{\pi}{6}+\frac{0.04}{\sqrt{3}}
$$

This is approximately $\frac{\pi}{6}+0.023094$ while $\arcsin (.52)$ is $\frac{\pi}{6}+0.023252$ to 6 places. Obviously, you wouldn't have been able to determine that without a calculator.

Note that the function $\arcsin (x)$ gives a result in radians. If you gave an answer in degrees, I suspect that you got the derivative all wrong. . . that is, you neglected to adjust by $180 / \pi$.

