Math 125 Solutions to modified $2^{\text {nd }}$ Midterm

1. For each of the functions $f(x)$ given below, find $\left.f^{\prime}(x)\right)$.
(a) 4 points $f(x)=x^{5}+5 x^{4}+4 x^{2}+9$

Solution:

$$
f^{\prime}(x)=5 x^{4}+20 x^{3}+8 x
$$

(b) 4 points $f(x)=x^{8} e^{2 x}$

Solution: This requires the product rule. Recall that the derivative of $e^{2 x}$ is $2 e^{2 x}$.

$$
f^{\prime}(x)=8 x^{7} e^{2 x}+2 x^{8} e^{2 x}
$$

(c) 4 points $f(x)=\frac{3 x^{2}+9}{x^{3}+2 \tan x}$

Solution: Using the quotient rule,

$$
\frac{6 x\left(x^{3}+2 \tan x\right)-\left(3 x^{2}+9\right)\left(3 x^{2}+2 \sec ^{2} x\right)}{\left(x^{3}+2 \tan x\right)^{2}}
$$

There is little point in trying to simplify this.
(d) 4 points $f(x)=\arctan (\ln (x))$

Solution: Using the chain rule, we have

$$
f^{\prime}(x)=\frac{1}{1+(\ln (x))^{2}} \cdot 1 / x=\frac{1}{x+x(\ln x)^{2}}
$$

2. Compute each of the following derivatives as indicated:
(a) 4 points $\frac{d}{d \theta}\left[\cos \left(\frac{\pi}{180} \theta\right)\right]$

Solution: This is just the derivative of the $\cos \theta$, when θ is in degrees. Using the chain rule, we get

$$
-\frac{\pi}{180} \sin \left(\frac{\pi}{180} \theta\right)
$$

(b) 4 points $\frac{d}{d u}[\sin (3 u) \sin (5 u)]$

Solution: Use the product rule to get

$$
\left(\frac{d}{d u} \sin (3 u)\right) \sin (5 u)+\sin (3 u)\left(\frac{d}{d u} \sin (5 u)\right)
$$

and then use the chain rule to get the answer, which is

$$
3 \cos (3 u) \sin (5 u)+5 \sin (3 u) \cos (5 u)
$$

(c) 4 points $\frac{d}{d t}\left[\frac{t}{5}-\frac{5}{t}\right]$

Solution: If you rewrite this as $\frac{1}{5} t-5 t^{-1}$, it is clear the derivative is $\frac{1}{5}+5 t^{-2}$
3. Let $f(x)=x e^{-6 x}$.
(a) 3 points Calculate $f^{\prime}(x)$

Solution: We use the product rule and the chain rule:

$$
f^{\prime}(x)=e^{-6 x}-6 x e^{-6 x}
$$

(b) 3 points Calculate $f^{\prime \prime}(x)$?

Solution: Taking the derivative of the above gives

$$
f^{\prime \prime}(x)=-6 e^{-6 x}-6 e^{-6 x}+36 x e^{-6 x}
$$

which simplifies to

$$
36 x e^{-6 x}-12 e^{-6 x}
$$

(c) 4 points For what values of x is $f(x)$ increasing?

Solution: To answer this, we need to know when $f^{\prime}(x)>0$, that is, where

$$
e^{-6 x}-6 x e^{-6 x}>0
$$

Factoring out the exponential term gives $e^{-6 x}(1-6 x)>0$, and since $e^{-6 x}$ is always positive, we only need ask where $1-6>0$. This happens for

$$
x<\frac{1}{6} .
$$

(d) 4 points For what values of x is $f(x)$ concave down?

Solution: We need to know when $f^{\prime \prime}(x)<0$, so factor $f^{\prime \prime}(x)$ as

$$
12 e^{-6 x}(3 x-1)
$$

As before, we can ignore the exponential term, since it is always positive, and we see that $f^{\prime \prime}(x)<0$ when $x<1 / 3$.
4. 10 points Write the equation of the line tangent to the curve

$$
y=3 x^{4}-x+\sqrt{x} \quad \text { at } x=1
$$

Solution: To write the equation of a line, we need a point and a slope. Since the line is tangent to the curve at $x=1$, it contains the point $(1, f(1))=(1,3)$.
To get the slope, we calculate $f^{\prime}(1)$. Taking the derivative gives

$$
f^{\prime}(x)=12 x^{3}-1+\frac{1}{2} x^{-1 / 2}
$$

so $f^{\prime}(1)=12-1+\frac{1}{2}=\frac{23}{2}$. Hence the line is

$$
y-3=\frac{23}{2}(x-1), \quad \text { or, equivalently, } \quad y=\frac{23}{2} x-\frac{17}{2}
$$

5. 10 points A ladder 12 feet long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall, and let ℓ be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does ℓ change with respect to θ when $\theta=\frac{\pi}{6}$?

Solution: Since the ladder forms a right triangle with the wall, we have $\ell=12 \sin \theta$. The rate of change of ℓ with respect to θ is $\frac{d \ell}{d \theta}$, which is $12 \cos \theta$. We want its value when $\theta=\frac{\pi}{6}$, so that is

$$
12 \cos \left(\frac{\pi}{6}\right)=12 \cdot \frac{\sqrt{3}}{2}=6 \sqrt{3}
$$

6. (a) 8 points Write the equation of the line tangent to the curve

$$
x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}
$$

at the point $(0,-1 / 2)$.
Solution: Rather than solve for y directly (which is possible in this case, but tricky), we use implicit differentiation to figure out the slope of the tangent line. Differentiating both sides with respect to x (and remembering that y is a function of x) gives

$$
2 x+2 y y^{\prime}=2\left(2 x^{2}+2 y^{2}-x\right)\left(4 x+4 y y^{\prime}-1\right)
$$

(on the right hand side we used the chain rule). Now we substitute $x=0$ and $y=-1 / 2$ to obtain

$$
0-1 \cdot y^{\prime}=2\left(0+2 \cdot \frac{1}{4}-0\right)\left(0+4 \cdot \frac{-1}{2} \cdot y^{\prime}-1\right) \quad \text { or } \quad-y^{\prime}=-2 y^{\prime}-1
$$

Solving the above for y^{\prime} gives $y^{\prime}=-1$.
Then the equation of the line with slope -1 passing through $(0,-1 / 2)$ is

$$
y+\frac{1}{2}=-1(x-0) \quad \text { that is } \quad y=-x-\frac{1}{2}
$$

(b) 5 points Use your answer from the previous part to estimate the y-coordinate of a point on the curve with $x=0.1$.
Solution: Plugging $x=0.1$ to the tangent line found above gives us

$$
y=-0.1-0.5=-0.6
$$

So, the point $(0.1,-0.6)$ should be close to a point on the curve.
If fact, the point on the lower part of the curve with $x=1 / 10$ is

$$
y=\frac{\sqrt{66+10 \sqrt{45}}}{20} \approx 0.5768
$$

so our approximation isn't too bad.

Page 5 of 6
7. 10 points If two resistors with resistance A and B are connected in parallel, the total resistance the total resistance R (in Ω) is given by the formula

$$
\frac{1}{R}=\frac{1}{A}+\frac{1}{B}
$$

If A is increasing at a rate of $0.3 \Omega / s$ and B is decreasing at a rate of $0.2 \Omega / s$, how fast is R changing when $A=80 \Omega$ and $B=100 \Omega$.

Solution: Translating the above, we have

$$
\frac{d A}{d t}=0.3, \quad \frac{d B}{d t}=-0.2
$$

and we want to know $d R / d t$. Differentiationg the relationship with respect to t (and using the chain rule), we get

$$
\begin{equation*}
-\frac{1}{R^{2}} \frac{d R}{d t}=-\frac{1}{A^{2}} \frac{d A}{d t}-\frac{1}{B^{2}} \frac{d B}{d t} \tag{1}
\end{equation*}
$$

We need to figure out what R is when $A=80$ and $B=100$, so we use

$$
\frac{1}{R}=\frac{1}{80}+\frac{1}{100}
$$

to get $R=400 / 9$.
Now we substitute into (1) above, and obtain

$$
-\frac{1}{(400 / 9)^{2}} \frac{d R}{d t}=-\frac{1}{80^{2}} \cdot \frac{3}{10}-\frac{1}{100^{2}} \cdot\left(-\frac{2}{10}\right)
$$

to get

$$
\frac{d R}{d t}=-\frac{43}{810} \approx-0.053 \Omega / s
$$

(Sorry about the fractions. I took this one from the book without doing it first.)
8. For the function $f(x)=x^{3}+3 x^{2}-24 x$
(a) 4 points Calculate $f^{\prime}(x)$.

Solution: $f^{\prime}(x)=3 x^{2}+6 x-24$.
(b) 4 points At what points does $f(x)$ have a horizontal tangent line?

Solution: $f(x)$ will have a horizontal tangent when $f^{\prime}(x)=0$. Factoring gives

$$
3 x^{2}+6 x-24=3(x-2)(x+4)
$$

so we have a horizontal tangent at $x=2$ and $x=-4$.
(c) 6 points For $-3 \leq x \leq 3$, at which x values does $f(x)$ attain its maximum and minimum values?

Solution: The absolute maximum and minimum can occur only at the endpoints or the critical numbers in the domain. Note that the critical point $x=-4$ is outside of the domain, so we must check at three places.
$f(-3)=-27+27+72=72 \quad f(2)=8+12-48=-28 \quad f(3)=27+27-72=-18$
So, for $-3 \leq x \leq 3$, we have

- the absolute maximum of $f(x)$ occurs at $x=-3, y=72$
- the absolute minimum of $f(x)$ occurs at $x=2, y=-28$

