MATH 125

Solutions to Second Midterm, Vers. 1

1. For each of the functions $f(x)$ given below, find $\left.f^{\prime}(x)\right)$.
(a) 3 points $f(x)=x^{9}+5 x^{4}+2 x^{2}+\pi^{2}$

Solution: Don't forget that $\pi^{2} \approx 9.87$, so its derivative is 0 .

$$
f^{\prime}(x)=9 x^{8}+20 x^{3}+4 x
$$

(b) 3 points $f(x)=\cos (x) \sin (4 x)$

Solution: This requires the product rule, and the chain rule.

$$
f^{\prime}(x)=-\sin (x) \sin (4 x)+4 \cos (x) \cos (4 x)
$$

(c) 3 points $f(x)=\frac{\sin (x)}{\cos (x)}$

Solution: After simplifying $\frac{\sin (x)}{\cos (x)}=\tan (x)$, we just remember that the derivative of $\tan (x)$ is $\sec ^{2}(x)$.
Alternatively, if you prefer to use the quotient rule, you should get

$$
\frac{\cos (x) \cos (x)+\sin (x) \sin (x)}{\cos ^{2}(x)}=\frac{1}{\cos ^{2}(x)}=\sec ^{2}(x)
$$

(d) 3 points $f(x)=\arctan \left(x^{2}\right)$

Solution: This is a straight chain-rule problem.

$$
f^{\prime}(x)=\frac{1}{1+\left(x^{2}\right)^{2}} \cdot(2 x)=\frac{2 x}{1+x^{4}}
$$

Several people were confused and thought that $\arctan (x)=\frac{1}{\tan (x)}=\cot (x)$; this is nonsense. You should know that $\arctan (x)=y$ means that $\tan (y)=x$.
2. Compute each of the following derivatives as indicated:
(a) 3 points $\frac{d}{d t}\left[\frac{e^{t}-e^{-t}}{e^{t}+e^{-t}}\right]$

Solution: Applying the quotient rule gives us

$$
\begin{aligned}
\frac{\left(e^{t}+e^{-t}\right)\left(e^{t}+e^{-t}\right)-\left(e^{t}-e^{-t}\right)\left(e^{t}-e^{-t}\right)}{\left(e^{t}+e^{-t}\right)^{2}} & =\frac{\left(e^{2 t}+2+e^{-2 t}\right)-\left(e^{2 t}-2+e^{-2 t}\right)}{\left(e^{t}+e^{-t}\right)^{2}} \\
& =\frac{4}{\left(e^{t}+e^{-t}\right)^{2}}
\end{aligned}
$$

(b) 3 points $\frac{d}{d u}[u \ln (u)]$

Solution: Using the product rule, we have

$$
1 \cdot \ln (u)+u \cdot \frac{1}{u}=\ln (u)+1
$$

(c) 3 points $\frac{d}{d z}[\ln (\sec (3 z))]$

Solution: From the chain rule, we have

$$
\frac{1}{\sec (3 z)} \cdot \sec (3 z) \tan (3 z) \cdot 3=3 \tan (3 z)
$$

(d) 3 points $\frac{d}{d x}\left[e^{x}-x^{e}\right]$

Solution: Remembering that e is a constant, we have $e^{x}-e x^{e-1}$.
3. 10 points Let \mathcal{C} be the curve which consists of the set of points for which

$$
x^{4}+x^{2}+y^{4}=18
$$

(see the graph at right).
Write the equation of the line tangent to \mathcal{C} which passes through the point $(1,-2)$.

Solution: In order to write the equation of a line, we need a point on the line (which we have: $(1,-2))$ and the slope of the line. For the slope, we need $d y / d x$ at the given point.
We could solve for y, getting $y= \pm \sqrt[4]{18-x^{4}-x^{2}}$, and take the derivative of the resulting function to get $y^{\prime}= \pm\left(18-x^{4}-x^{2}\right)^{-3 / 4}\left(-4 x^{3}-x\right)$.

Instead, let's use implicit differentiation:

$$
4 x^{3}+2 x+4 y^{3} \frac{d y}{d x}=0
$$

Since we want the slope when $x=1$ and $y=-2$, we plug in and solve for $d y / d x$.

$$
4+2-32 \frac{d y}{d x}=0, \quad \text { so } \quad \frac{d y}{d x}=\frac{-6}{-32}=\frac{3}{16}
$$

Thus, the desired line is

$$
y+2=\frac{3}{16}(x-1) \quad \text { or } \quad y=\frac{3}{16} x-\frac{35}{16}
$$

4. 10 points Give the x and y coordinates of the (absolute) maximum and minimum values of the function

$$
y=x^{4}-8 x^{2}+1 \quad \text { where } \quad-1 \leq x \leq 3
$$

Solution: First, we locate the critical points. Since the function is a polynomial, $f^{\prime}(x)$ is defined everywhere, so we only need concern ourselves with the x for which $f^{\prime}(x)=0$.
Since $f^{\prime}(x)=4 x^{3}-16 x=4 x\left(x^{2}-4\right)=4 x(x-2)(x+2)$, we have the critical points

$$
x=0 \quad x=2 \quad x=-2
$$

However, since we are concerned only with $-1 \leq x \leq 3$, we discard $x=-2$.
Now we evaluate f at each of the critical points, and the endpoints:

- $f(0)=1$.
- $f(2)=16-32+1=-15$.
- $f(-1)=1-8+1=-6$.
- $f(3)=81-72+1=10$.

The largest value of the above occurs at $x=3, y=10$. This is our absolute maximum. The smallest occurs when $x=2$ and $y=-15$, which is our absolute minimum.
5. Let $f(x)=x e^{-4 x}$.
(a) 3 points Calculate $f^{\prime}(x)$

Solution: We use the product rule and the chain rule:

$$
f^{\prime}(x)=e^{-4 x}-4 x e^{-4 x}
$$

(b) 3 points Calculate $f^{\prime \prime}(x)$

Solution: Taking the derivative of the above gives

$$
f^{\prime \prime}(x)=-4 e^{-4 x}-4 e^{-4 x}+16 x e^{-4 x}
$$

which simplifies to

$$
16 x e^{-4 x}-8 e^{-4 x}
$$

(c) 3 points For what values of x is $f(x)$ increasing?

Solution: To answer this, we need to know when $f^{\prime}(x)>0$, that is, where

$$
e^{-4 x}-4 x e^{-4 x}>0
$$

Factoring out the exponential term gives $e^{-4 x}(1-4 x)>0$, and since $e^{-4 x}$ is always positive, we only need ask where $1-4 x>0$. This happens for

$$
x<\frac{1}{4} .
$$

(d) 3 points For what values of x is $f(x)$ concave down?

Solution: We need to know when $f^{\prime \prime}(x)<0$, so factor $f^{\prime \prime}(x)$ as

$$
8 e^{-4 x}(2 x-1)
$$

As before, we can ignore the exponential term, since it is always positive, and we see that $f^{\prime \prime}(x)<0$ when $x<1 / 2$.
6. 10 points A leaky oil tanker is anchored offshore. Because the water is very calm, the oil slick always stays circular as it expands, with a uniform depth of 1 meter. If the oil is leaking from the tanker at a rate of $100 \frac{m^{3}}{h r}$, how fast is the radius of the slick expanding (in $\frac{m}{h r}$) when the diameter is 20 meters?

Solution: First, notice that since we are given the rate of oil leaking out from the tanker, this is the rate of change of volume of oil $\left(d V / d t=100 \frac{m^{3}}{h r}\right)$, and we want to know the rate of change of the radius $(d r / d t)$. This means we need to write a formula for the volume of the oil as a function of the radius.
Since we are told that the oil slick is circular and has a constant depth of 1 meter, it is a cylinder of height 1 and radius r. That is,

$$
V=\pi r^{2}
$$

Taking the derivative with respect to time gives

$$
\frac{d V}{d t}=2 \pi r \frac{d r}{d t}
$$

and plugging in the given values yields

$$
100=2 \pi \cdot 10 \frac{d r}{d t}
$$

so we have

$$
\frac{d r}{d t}=\frac{100}{20 \pi}=\frac{5}{\pi}
$$

