Math 125

Solutions to First Midterm

1. Compute each of the following limits. If the limit is not a finite number, please distinguish between $+\infty,-\infty$, and a limit which does not exist (DNE). Justify your answer, at least a little bit.
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{6 x(x-3)}$

Solution:

$$
\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{6 x(x-3)}=\lim _{x \rightarrow 3} \frac{(x+3)}{6 x}=\frac{3+3}{18}=\frac{1}{3} .
$$

3 points
(b) $\lim _{x \rightarrow \infty} 6 \cos \left(\frac{\pi}{x}\right)$

Solution:

$$
\lim _{x \rightarrow \infty} 6 \cos (\pi / x)=6 \cos (0)=6
$$

(c) $\lim _{x \rightarrow 2} \frac{x^{2}}{(x-2)^{2}}$

Solution: Note for x close to 2 , the numerator is close to 4 while the denominator tends towards zero. Thus, the function becomes unbounded at 2 . Note also that the denominator is always positive. Hence, the limit is $+\infty$.
2. More of the same: compute each of the following limits. If the limit is not a finite number, please distinguish between $+\infty,-\infty$, and a limit which does not exist (DNE). Justify your answer, at least a little bit.
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{6 x(x-1)}$

Solution: For x very large, $x^{2}-1 \approx x^{2}$, and $x-1 \approx x$. Thus

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{6 x(x-1)}=\lim _{x \rightarrow \infty} \frac{x^{2}}{6 x(x)}=\lim _{x \rightarrow \infty} \frac{1}{6}=\frac{1}{6}
$$

(b) $\lim _{h \rightarrow 3} \frac{(x+h)^{2}-x^{2}}{h}$

Solution:

$$
\lim _{h \rightarrow 3} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 3} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 3} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 3} 2 x+h=2 x+3 .
$$

3 points (c) $\lim _{x \rightarrow-\infty} e^{x} \cos (x)$
Solution: Observe that for any x, we have $-1 \leq \cos (x) \leq 1$, and so we also have $-e^{x} \leq$ $e^{x} \cos (x) \leq e^{x}$. Applying the squeeze theorem,

$$
\lim _{x \rightarrow-\infty}\left(-e^{x}\right) \leq \lim _{x \rightarrow-\infty} e^{x} \cos (x) \leq \lim _{x \rightarrow-\infty}\left(e^{x}\right)
$$

that is,

$$
0 \leq \lim _{x \rightarrow-\infty} e^{x} \cos (x) \leq 0
$$

Hence, the limit is 0 .
3. Let $f(x)=2 x^{3}-5 x+2$.

3 points

3 points

3 points

3 points
(a) Find the slope of the secant line passing through the points on the curve $y=f(x)$ where $x=0$ and $x=1$.

Solution: The slope of a line is the ratio of the change in y to the change in x. Here we have

$$
\text { slope }=\frac{f(1)-f(0)}{1-0}=\frac{-1-2}{1}=-3 .
$$

(b) Find $f^{\prime}(1)$.

Solution: Using the power rule, $f^{\prime}(x)=6 x^{2}-5$, so $f^{\prime}(1)=1$.
(c) Write the equation of the tangent line to the graph of $y=f(x)$ when $x=1$.

Solution: The point $(1, f(1))$ is on both the curve and the line. Now, $f(1)=2-5=-3$. We just need the equation of the line of slope 1 passing through the point $(1,-3)$. This is

$$
y+3=(x-1) \quad \text { or } \quad y=x-4
$$

(d) At $x=1$, is $f(x)$ concave up, concave down, or neither? Justify your answer fully.

Solution: Since $f^{\prime \prime}(x)=12 x$, we know $f^{\prime \prime}(1)>0$. Thus $f(x)$ is concave up at $x=1$.

8 points 4. For what values of x is the function $f(x)=\frac{e^{x}}{4-e^{1 / x}}$ continuous?

Solution: Since $f(x)$ is a composition of exponentials and rational functions, it is continuous everywhere on its domain.
Since $1 / x$ is not defined for $x=0$, the function is not continuous there.
Furthermore, there will be a discontinuity when the denominator is zero. That is, where $4-e^{1 / x}=0$, or

$$
\begin{gathered}
4=e^{1 / x} \\
\ln (4)=\ln \left(e^{1 / x}\right)=1 / x \\
x=\frac{1}{\ln (4)} .
\end{gathered}
$$

Thus, $f(x)$ is continuous at all real numbers except $x=0$ and $x=\frac{1}{\ln (4)}$.

8 points 5. Write a limit that represents the slope of the graph

$$
y= \begin{cases}|x|^{x} & x \neq 0 \\ 1 & x=0\end{cases}
$$

at $x=0$. You do not need to evaluate the limit.

Solution: We just use the definition of the derivative at $x=0$:

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}
$$

Since h is not zero, $f(h)=|h|^{h}$ and $f(0)=1$. So,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{|h|^{h}-1}{h}
$$

If you prefer to use the version of the definition $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$, you get the same answer except with x instead of h.
6. At right is the graph of the derivative $f^{\prime}(x)$ of a function $f(x)$. Use it to answer each of the following questions.

4 points (a) Is $f(x)$ concave up, concave down, or neither at $x=0$?
Solution: Since the derivative is decreasing at $x=0$, we know $f(x)$ is concave down there.

4 points (b) Which of the following best represents the graph of $f(x)$? (circle your answer).

Solution: The graph of $f(x)$ is

S is
(c) Which of the following best represents the graph of $f^{\prime \prime}(x)$? (circle your answer).

Solution: The graph of $f^{\prime \prime}(x)$ is
7. Let $f(x)=\frac{x^{2}-4 x}{2\left(x^{2}-16\right)}$

4 points

4 points
(b) Identify the vertical asymptotes of $f(x)$. If there are none, write "NONE".

Solution: We have a vertical asymptote at $x=a$ whenever $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$. The denominator of $f(x)$ factors as $2(x-4)(x+4)$, so we have to look at $a=4$ and $a=-4$. Note that if $x \neq 4 x \neq-4$, we have

$$
f(x)=\frac{x^{2}-4 x}{2\left(x^{2}-16\right)}=\frac{x(x-4}{2(x-4)(x+4)}=\frac{x}{2(x+4)}
$$

Near $x=-4$, we have

$$
\lim _{x \rightarrow-4^{+}} f(x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow-4^{-}} f(x)=-\infty,
$$

so there is a vertical asymptote at $x=-4$.
Near $x=4$, we have

$$
\lim _{x \rightarrow 4} f(x)=\lim _{x \rightarrow 4} \frac{x}{2(x+4)}=\frac{4}{2(4+4)}=\frac{1}{4}
$$

Thus, $x=4$ is not a vertical asymptote.

8 points

8. Write a function which expresses the area of a rectangle with a perimeter of 16 feet in terms of its width.

Solution: Let's let W denote the width of the rectangle (in feet), and L denote its length. Since the perimeter is 16 , we know that

$$
2 L+2 W=16
$$

or equivalently, $L=8-W$.
Since the area of the rectangle is $L W$, we have

$$
A(W)=(8-W) W
$$

