Solutions for MAT 125 First Midterm

February 23, 2009

1. Let $f(x)=x^{2}+3 x$ with domain all real numbers. Let $A=(1, f(1))$ and $B=(2, f(2))$. There is also the point $C=(x, f(x))$ with x close to 1 .
(a) Calculate the slope of the line through A and B.

Solution. The line through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ has slope

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

In this case take

$$
\left(x_{1}, x_{2}\right)=A=(1, f(1))=(1,4)
$$

and

$$
\left(x_{2}, y_{2}\right)=B=(2, f(2))=(2,10)
$$

This gives

$$
m=\frac{10-4}{2-1}=6
$$

(b) Give an equation for the line through A and B.

Solution. An equation for the line with slope m which contains a point $\left(x_{1}, y_{1}\right)$ is

$$
y-y_{1}=m\left(x-x_{1}\right) .
$$

By part (a) we know that the slope is $m=6$. Taking $\left(x_{1}, y_{1}\right)=A=(1,4)$ gives the equation

$$
y-4=6(x-1)
$$

which can be simplified to

$$
y-6 x+2=0
$$

(c) Explain that the slope of the line through A and C is given by

$$
\text { slope }=\frac{x^{2}+3 x-4}{x-1}
$$

Solution. By the same reasoning used in part (a), the slope of the line through $A=(1,4)$ and $C=(x, f(x))$ is

$$
\text { slope }=\frac{f(x)-4}{x-1}=x^{2}+3 x-4 x-1
$$

(d) Calculate the slope of the tangent line to the graph of f at A.

Solution. The slope of the tangent line to the graph of f at A is the limit as C approaches A of the slope of the line through A and C. As C approaches A, x approaches 1 . Using the result of (c), we can write the slope of the tangent line to the graph of f at A as

$$
\text { slope }=\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x-1}
$$

To calculate this limit we use the factorization

$$
x^{2}+3 x-4=(x+4)(x-1) .
$$

Now we can calculate the limit:

$$
\begin{aligned}
\text { slope } & =\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x+4)(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1}(x+4) \\
& =1+4 \\
& =5 .
\end{aligned}
$$

2.

(a) Calculate the limit

$$
\lim _{x \rightarrow 2} \frac{3 x^{2}-15 x+18}{x-2}
$$

Solution. Observe that we can factor the numerator as

$$
3 x^{2}-15 x+18=3\left(x^{2}-5 x+6\right)=3(x-2)(x-3) .
$$

This allows us to calculate the limit:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{3 x^{2}-15 x+18}{x-2} & =\lim _{x \rightarrow 2} \frac{3(x-2)(x-3)}{x-2} \\
& =\lim _{x \rightarrow 2} 3(x-3) \\
& =3(2-3) \\
& =-1 .
\end{aligned}
$$

(b) Calculate the limit

$$
\lim _{x \rightarrow 2} \frac{3 x^{2}-15 x+19}{x-2}
$$

Solution. This limit does not exist (even as an infinite limit). First note that

$$
\lim _{x \rightarrow 2^{-}} \frac{1}{x-2}=-\infty, \quad \text { and } \quad \lim _{x \rightarrow 2^{+}} \frac{1}{x-2}=+\infty
$$

Since $\lim _{x \rightarrow 2}\left(3 x^{2}-15 x+19\right)=1$, the limit laws (which are valid for infinite limits) tell us that

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \frac{3 x^{2}-15 x+19}{x-2} & =\left(\lim _{x \rightarrow 2^{-}}\left(3 x^{2}-15 x+19\right)\right)\left(\lim _{x \rightarrow 2^{-}} \frac{1}{x-2}\right) \\
& =\lim _{x \rightarrow 2^{-}} \frac{1}{x-2} \\
& =-\infty
\end{aligned}
$$

The analogous calculation shows that

$$
\lim _{x \rightarrow 2^{+}} \frac{3 x^{2}-15 x+19}{x-2}=+\infty
$$

Since the left limit is not equal to the right limit, we conclude that the limit does not exist.
3. Explain whether the function

$$
f(x)= \begin{cases}\frac{x^{2}-3 x}{x^{2}-9} & x \neq 3 \\ 21 & x=3\end{cases}
$$

is continuous at $x=3$ or not.
Solution. The function is continuous at $x=3$ if and only if $\lim _{x \rightarrow 3} f(x)=$ $f(3)$. But

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}-9} & =\lim _{x \rightarrow 3} \frac{x(x-3)}{(x-3)(x+3)} \\
& =\lim _{x \rightarrow 3} \frac{x}{x+3} \\
& =\frac{3}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

Therefore the value of the limit is different from $f(3)=21$, so the function is not continuous at $x=3$.
4. Given the function

$$
f(x)=\left[\frac{1}{1-x}+\frac{1}{x-3}\right]+\cos (\pi x),
$$

with domain the numbers between 1 and $3,1<x<3$.
(a) Calculate $f(2)$.

Solution. Since $\cos (2 \pi)=1$,

$$
f(2)=\left[\frac{1}{2-1}+\frac{1}{2-3}\right]+\cos (2 \pi)=[1-1]+1=0+1=1 .
$$

(b) Is there a solution, a number x between 1 and 3 , of $f(x)=0$?

Solution. Yes. First note that

$$
\begin{aligned}
f(5 / 2) & =\left[\frac{1}{5 / 2-1}+\frac{1}{5 / 2-3}\right]+\cos (5 \pi / 2) \\
& =\left[\frac{1}{3 / 2}+\frac{1}{-1 / 2}\right]+0 \\
& =\frac{2}{3}-2 \\
& =-\frac{4}{3} .
\end{aligned}
$$

The function f is continuous on the closed interval $[2,5 / 2]$ and satisfies $f(2)>0, f(5 / 2)<0$. By the intermediate value theorem there exists a number $x \in(2,5 / 2)$ with $f(x)=0$.
5. Calculate

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+21}{7 x^{4}+31 x} .
$$

Solution. First write

$$
\frac{3 x^{2}+21}{7 x^{4}+31 x}=\frac{3 x^{2}+21}{7 x^{4}+31 x} \cdot \frac{1 / x^{4}}{1 / x^{4}}=\frac{3 / x^{2}+21 / x^{4}}{7+31 / x^{3}}
$$

Using the limit laws and the fact that

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0
$$

for any positive integer n, we get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{2}+21}{7 x^{4}+31 x} & =\lim _{x \rightarrow \infty} \frac{3 / x^{2}+21 / x^{4}}{7+31 / x^{3}} \\
& =\frac{3 \lim _{x \rightarrow \infty}(1 / x)+21 \lim _{x \rightarrow \infty}\left(1 / x^{4}\right)}{7+31 \lim _{x \rightarrow \infty}\left(1 / x^{3}\right)} \\
& =\frac{3 \cdot 0+21 \cdot 0}{7+31 \cdot 0} \\
& =0 .
\end{aligned}
$$

6.

(a) Calculate

$$
\lim _{x \rightarrow 0^{+}} e^{-1 / x}
$$

Solution. If $x>0$ then $-1 / x<0$, and

$$
\lim _{x \rightarrow 0^{+}}(-1 / x)=-\infty .
$$

By the law for limits of compositions,

$$
\lim _{x \rightarrow 0^{+}} e^{-1 / x}=\lim _{y \rightarrow-\infty} e^{y}=0
$$

(b) Calculate

$$
\lim _{x \rightarrow 0^{-}} e^{-1 / x}
$$

Solution. If $x<0$ then $-1 / x>0$ and

$$
\lim _{x \rightarrow 0^{-}}(-1 / x)=+\infty
$$

By the law for limits of compositions,

$$
\lim _{x \rightarrow 0^{-}} e^{-1 / x}=\lim _{y \rightarrow+\infty} e^{y}=+\infty
$$

7. Explain in words

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

Solution. This means that the values of the function $f(x)$ can be made arbitrarily close to L by taking x sufficiently large.
8. This problem requires a sketch, but I don't know how to insert one into this file.

