circle your section

2 Tues 11:20
3 Thur 12:50
4 Tues 5:30

1. If you invest $\$ 1000$ at 8% annually, compounded monthly, how many months will it be until you double your money?

$$
\begin{array}{lll}
\log (1000)\left(1+\frac{.08}{12}\right) & \frac{\log (2000)}{\log \left(1+\frac{.08}{12}\right)} & \frac{\log (1000)}{\log \left(1+\frac{.08}{12}\right)} \\
\frac{\log (2)}{\log \left(1+\frac{.08}{12}\right)} & \sqrt{1000+\frac{.08}{12}} & \frac{1}{12} \log \left(1+\frac{.08}{12}\right)
\end{array}
$$

2. Suppose that at the end of each month, you put $\$ 100$ into an account that pays 8% annual interest, compounded monthly. How much money will be in the account at the end of 5 years?

$$
\begin{array}{lll}
100\left(\frac{\left(1+\frac{.08}{12}\right)^{60}-1}{\frac{.08}{12}}\right) & \frac{\left(100+\frac{.08}{12}\right)^{60}+1}{\frac{.08}{12}} & 100\left(\left(1+\frac{.08}{12}\right)^{60}\right) \\
1200\left(1+\frac{.08}{12}\right)^{5} & 100\left(\frac{\left(1+\frac{.08}{12}\right)^{60}}{1-\frac{.08}{12}}\right) & \frac{100}{12} \log \left(1+\frac{.08}{12}\right)^{60}
\end{array}
$$

3. Suppose that at the end of each month, you put $\$ 100$ into an account that pays 8% annual interest, compounded monthly. How many months will it take to have at least $\$ 2000$ in the account?

$$
\begin{array}{lll}
\frac{\log 301}{\log 1+\frac{.08}{12}} & \frac{\log \left(\frac{16}{120}+1\right)}{\log \left(1+\frac{.08}{12}\right)} & \frac{\log \left(2000+\frac{.08}{12}\right)}{1-\frac{.08}{12}} \\
\log \left(\frac{1+\frac{.08}{12}}{\log \left(100+\frac{.08}{12}\right)}\right) & 100\left(\frac{\left(1+\frac{.08}{12}\right)^{60}}{1+\frac{.08}{12}}\right) & \frac{1}{12} \log \left(2000+\frac{.08}{12}\right)^{5}
\end{array}
$$

