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Abstract

Newton’s method is one of the most widely known numerical algorithms for finding the
roots of smooth functions of one variable. However, it is also considered to be “unpredictable”
in that many initial values for the method do not converge to a root of the function. We will
show that, for polynomial functions, if the initial values are chosen properly convergence to
the roots can be guaranteed.

More specifically, Newton’s method for a polynomial yields a rational function of the
Riemann sphere to itself, and we can apply techniques of complex dynamics to analyze its
behavior. One of the results is that the immediate basins of the roots are large and have a
definite “width” which we can bound from below. For a root of a polynomial of degree d, this
width is of order 1/d. We present an algorithm for choosing starting values for Newton’s
method which will find all of the roots (to within ε) in presumably no more than order
d3 log(1

ε ) evaluations.

We also present some experimental results concerning the relationship between the “New-
ton flow” for a polynomial, the relaxed Newton’s method, and Newton’s method. Some con-
jectures are made about how one might find polynomials which cause problems for Newton’s
method and related methods.
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Addendum to
Finding Roots of Complex Polynomials with Newton’s Method

We can now improve the major result in chapter 3 and simultaneously simplify the proof.

This simplification makes the “tedious, but necessary, calculations” (section 3.7) no longer

necessary (although still tedious). The main change is that we estimate the width of B(α)

near a circle of moderate radius directly, instead of obtaining estimates near infinity and

pulling them in.

Note that if R ≥ 2
(
d+1
d−1

)
, then the image of the circle of radius R lies outside of D2.

Denote the annulus bounded by this circle and its image by AR. By Proposition 1.9, we can

find an annulus A around ∞ which will be mapped univalently onto AR by some iterate of

N . Furthermore, B(α)∩AR is isomorphic to an annulus (in the torus obtained by identifying

the boundary curves of AR under the action of N). This annulus has the same modulus as

the sector V , namely π
log(M ′(ξ)) .

In order to estimate the width of the “thinnest part” of B(α) lying in AR, we apply the

argument of section 3.5 (almost). First, note that log(AR) is a “rectangle” with 3 straight

sides. The “wiggly side” corresponds to the inner boundary of AR. As a result of Lemma

1.7, the inner boundary of AR lies inside the disk of radius R − R−2
d , and so the “wiggly

rectangle” contains a straight-sided rectangle of height 2π and width log
(

Rd
Rd−R+2

)
. We now

use the construction in section 3.5 to conclude that the thinnest part of log (B(α) ∩ AR) is

at least

2π
√
M ′(ξ)

1 +M ′(ξ)
log

Rd

Rd−R + 2
.

Now apply the same argument as in Theorem 3.6 to obtain

Theorem 1. If R ≥ 2
(
d+1
d−1

)
, there is a point tξ ∈ B(α), with |tξ| = R, which is the center

of a disk of radius at least

R tanh

 π
√
M ′(ξ)

1 +M ′(ξ)
log

Rd

Rd−R + 2

 ≥ 2π(R− 2)

3d
(
1 +

√
M ′(ξ)

)
contained entirely in B(α). (The point ξ is the appropriate fixed point of the map M .)

The rest of the argument is unchanged except for the constants, so we obtain our major

result:
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Theorem 2. Choose R ≥ 2
(
d+1
d−1

)
and let α be a root of multiplicity m, with N |B(α) of

degree s. Then there are points t1, . . . , ts of magnitude R for which a disk of radius ri
centered at ti lies entirely within B(α). These radii satisfy

s∑
i=1

ri ≥
2π(R− 2)

3d
(
1 +

√
2m

2m−1

) .
Note the lower bound on R decreases with d, so we may always use R = 4. Using this,

we have the immediate result that the immediate basin of any root α takes up at least 1
6
√

3
of the circumference of the circle of radius 4. We restate two immediate consequences here:

Corollary 3. Let p(z) be a centered polynomial in Pd(1), and |z| ≥ 4. Then the proba-

bility that Nn(z) will converge to a root of p is at least 1
6d
√

3
.

Corollary 4. Let p(z) be a centered polynomial in Pd(1). Let t1, . . . , tn be points equally

spaced around the circle of radius 4, where n ≥ 11d(d− 1). Then for each root αi of p(z), at

least one of the points tj lies in B(αi).

v



1. Introduction

Newton’s method is one of the simplest, most widely known methods for approximating

the roots of smooth functions of one variable. It is often taught in first semester calculus

courses as a nice application of the derivative.

Briefly stated, the method (for a function with real coefficients) is this: Suppose we want

to find a root of the equation

p(x) = 0.

Make an initial guess x0, and then approximate the function p(x) by its tangent line at x0.

Let x1 be the point where the tangent line meets the x–axis. If x1 is not a sufficiently good

approximation to a root, we repeat the process with x1 as the next guess. See Figure 1.1.

Figure 1.1: Newton’s method for a real polynomial.

This geometric idea yields the iteration scheme

xi+1 = xi −
p(xi)

p′(xi)
.

We can perform the same iteration where p is a complex function, and our initial value z0

is also complex. In fact, we shall see that it is often preferable to think of the process as

occurring in C, even for a real function. We can think of Newton’s method as iterating the

map

Np(z) = z − p(z)

p′(z)
.

If p is a polynomial (a restriction we will make from here on), the resulting Newton map Np
is a rational map of the Riemann Sphere C = C ∪ {∞} to itself. This fact enables us to

analyse Newton’s method using techniques of complex dynamics.
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The main theme of this paper is “How can we be assured of finding all the roots of a

polynomial with Newton’s method?”

1.1 Some History

Newton’s method is almost certainly due in part to Newton himself, although in a rather

different form. According to [Cj], Newton first explained his method for approximating the

real roots of a polynomial in De analysi per aequationes numero terminoriaum infinitas in

1669, although it was not published until 1704. He also gave essentially the same explanation

in Methodus fluxionum et serierum infinitarum, which was scheduled to be published in 1671,

but not printed until 1736. The first printed account of the technique actually appeared in

Wallis’ Algebra in 1685.

Newton found an approximate root of the cubic

y3 − 2y − 5 = 0

by setting y = 2 + p to obtain

p3 + 6p2 + 10p− 1 = 0.

He ignores the higher powers of p to get the next approximation p = 0.1 + q. Making this

substitution gives

q3 + 6.3q2 + 11.23q + 0.061,

or q = −0.0054−r. He repeats this process once more to obtain r = −0.00004854+s, which

yields an approximate root

y = 2 + 0.1− 0.0054− 0.00004854 = 2.09455147.

Newton was apparently aware that the process might fail to converge, but he fails to go any

deeper into that question. He gives no other examples of the method for finding roots. He

does, however, exploit the method to find series solutions for implicitly defined functions,

and to compute the infinite series for sin x and cosx by inverting the series for arcsin x and

arccosx! (See [E].)

Note that Newton derived a new equation from each successive approximation, instead

of iterating the “Newton function” as is done today. This iteration of x − p(x)
p′(x) was a

modification made by Joseph Raphson in 1690. Raphson’s reformulation greatly simplifies

the computational process; it is for this reason that Newton’s method is often called as

“Newton–Raphson iteration”.

Later (1740), Thomas Simpson discussed the extension of the Newton–Raphson method

to irrational and transcendental equations. He did not mention Newton or Raphson, however,

and says his procedure was “a new method”.
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Joseph Fourier is generally credited with providing sufficient (but not necessary) condi-

tions for convergence of the iterates to a root in 1831. However, his results were anticipated

by J. R. Mourraille in 1768. Both give the geometric condition that convergence is assured

if the initial approximation x0 is chosen so that the polynomial is concave up on the interval

between the root and x0.

In 1879, Arthur Cayley introduced what he calls the “Newton–Fourier Imaginary Prob-

lem”. Here, “throwing aside the restrictions as to reality”, he suggests applying Newton-

Raphson iteration to a complex rational function p(z), and investigating what the fate is of

an arbitrary point in C. He stated in [Ca] and [Ca1] that “the solution is easy and elegant

in the case of a quadratic equation”, but gave few details. He also said that the solution for

the cubic “appears to present considerable difficulty”.

In [Ca3] and [Ca4], Cayley gave a more detailed explanation of the solution of the

quadratic case, which in modern language is essentially this: For a quadratic polynomial

p(z), the Newton map Np(z) is conjugate to the map z 7→ z2 via a Möbius transformation.

That is, we can make a change of variables so that iterating Np behaves just like iterating z2.

This change of variables sends one root to 0 and the other to∞, and maps the perpendicular

bisector of the segment joining the roots to the unit circle. The points on the bisector never

converge to a root, and all other points converge to the root which lies nearest. See Figure

1.2. More detailed explanations of Cayley’s result appear in [PSH], [PR] and [S2].

Figure 1.2: The convergence of Newton’s method for p(z) = z2 − 1. The gray
level indicates the speed of convergence to a root, with lighter colors converging in
fewer iterations. The black line in the middle is the imaginary axis, which does not
converge to a root.

Until recently, little was known about the global convergence of Newton’s method. It

was known that quadratic convergence occurs in a neighborhood of a simple root, and some

of the behavior for special cases was understood. In the middle of this century, Barna [Ba]
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showed that for a polynomial with all roots real, Newton’s method converges to a zero on

all of R except a Cantor set.

Due to the lack of assured convergence, the general feeling among the users of the method

was that the method works well if one has a good idea of where a root might be. If not, just

pick a point at random, and if that fails, pick another. This is still common practice today.

In an attempt to overcome the difficulties with Newton’s method, a large number of

variants of the method have been introduced. For example, one technique is to use a slower,

but “surer” method to get near a root, and then apply Newton’s method. Another common

modification is the relaxed Newton’s method, which consists of iterating

Nh,p(z) = z − h p(z)

p′(z)
.

For h 6= 1, the relaxed Newton’s method does not have quadratic convergence in a neighbor-

hood of a simple root, although it may near a multiple root (for appropriate h). Smale [S1],

[S3] has studied the efficiency of such methods extensively, and Kim [K1] has computed the

topological complexity of such algorithms. Flexor and Sentenac [FS] have recently shown

that there is a choice of h ∈ C (depending on p) such that Nh,p converges almost everywhere.

Kim [K2] has also examined the behavior of the relaxed Newton’s method where the param-

eter h is variable. Because of its intimate connection with the regular Newton’s method, we

will return to a discussion of the relaxed Newton’s method in Chapter 4.

Recently, there has been a great resurgence of interest in the behavior of numerical

algorithms, especially in viewing them as dynamical systems (See [Sh], [S2], [SS1], [SS2],

[S3], [S4], and others). In particular, Np is a rational map of C, and the theory of complex

dynamical systems, originated by Fatou ([F1], etc.) and Julia ([J]), can be applied. Cayley’s

work on Newton’s method may have been one of the original motivations for the development

of complex dynamics by Fatou and Julia.

Iterating Np is a special case of a purely iterative algorithm, as introduced in [S2]. It is

not generally convergent for polynomials of degree d > 2. That is, there are open sets of

polynomials for which an open set of initial conditions fail to converge. We give examples

of such polynomials in a later section. McMullen has shown that there is no generally

convergent purely iterative algorithm for polynomials of degree d ≥ 4, as well as constructing

a modification of Newton’s method which is generally convergent for cubics; see [Mc1] and

[Mc2]. In [DM], Doyle and McMullen give an algorithm for solving a quintic polynomial by

iteration; this algorithm uses a “tower of purely iterative algorithms”.

Newton’s method fails on an open set when there is an attracting periodic orbit. Curry,

Garnett, and Sullivan [CGS] have several computer studies of this case for a family of cubic

polynomials. Here, one sees the appearance of Mandelbrot sets in the parameter plane; this

is explained by the theory of polynomial–like mappings as developed in [DH]. (See [Bl], [Ma],

[DH1], [DH2], [PR], and others for a discussion of the Mandelbrot Set.) Hurley [Hu] has
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shown that there can be as many as d − 2 such periodic attractors. See also [HM], [Hu2],

and [SU].

Let p be a polynomial in the family Pd(1) (defined below) and define Bp to be the set

of points which tend to a root of p under iteration of Np. In [S2], Smale asks (Problem 7A)

for a lower bound on the area of Bp ∩D2. Friedman [Fr] gives a bound which tends to 0 as

d→∞. It is not known if there is a nonzero lower bound for this area which is independant

of d.

In [M], Manning gives an algorithm for finding the roots of a polynomial with Newton’s

method. He does this by estimating the size of the immediate basin of attraction for an

“exposed root” α as it crosses the region between the circle of radius d and its preimage. A

root is exposed if it lies on the convex hull of the roots, and the interior angle of the hull

is not too great. There are always at least 2 exposed roots; to obtain the interior roots,

the polynomial is deflated (that is, the roots already determined are divided out) and the

process is repeated. Several of the techniques in our Chapter 3 are quite similar to those in

[M].

1.2 Basic Complex Dynamics

In this section, we review some basic facts from complex dynamics. A good reference for

this material is [Bl].

The field of complex dynamics began with work done in the early part of this century by

G. Julia [J] and P. Fatou [F1-4]. Its main concern is understanding the behavior of points

under iteration of an analytic function f : C→ C, where C is the one-point compactification

of C obtained by adding a point at ∞. The Riemann surface C is usually referred to as the

Riemann Sphere.

We denote the n–fold composition of f with itself by fn. The orbit of a point z is the

sequence {fn(z)}∞n=0. A point z is said to be a periodic point if fn(z) = z; such a point is

called a fixed point if n = 1.

By the chain rule, the derivative along a periodic orbit of least period n is (fn)′(z) =∏n−1
i=0 f

′(f i(z)). This gives the total amount of local expansion along the orbit. A point z

(resp. orbit) is said to be attracting if the modulus of its derivative is less than 1; if the

modulus is greater than 1, the point (resp. orbit) is called repelling. A point (resp. orbit)

with derivative 0 is called superattracting; in a neighborhood of a superattracting orbit, f

contracts dramatically.

Definition. Let α be an attracting fixed point for the map N(z). Then the set

{z : Nn(z)→ α as n→∞}

is the basin of attraction of α. The connected component of this set which contains α is called

its immediate basin, which we shall denote B(α). The basin of attraction of a periodic orbit

can be defined similarly.
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Definition. The Julia Set of f , denoted Jf , is the set of points z ∈ C for which the family

of iterates {fn} is not normal in any neighborhood of z.

The Julia set is often referred to as the chaotic set; it is where all the complicated dynamics

occur.

Proposition 1.1.

(i) Jf = {repelling periodic points of f}.
(ii) Jf is a closed, perfect, non-empty set without interior.

(iii) If A is the basin of attraction of an attracting orbit, then Jf = Fr(A).

Theorem 1.2. The immediate basin of a periodic attractor of a rational map f must contain

at least one critical value of f . Moreover, if every critical point of f lies in some basin of a

periodic attractor, then these basins have full measure in C.

1.3 Newton’s Method: Mathematical Preliminaries

Here we give the preliminary facts about Newton’s method that we will need in the sequel.

For a polynomial p(z), we define the Newton map to be

Np(z) = z − p(z)

p′(z)
.

We will usually omit the subscript when there is no confusion about which polynomial we

are working with. The following proposition lists some of the basic properties of N , which

are easily verified.

Proposition 1.3.

(i) If p(z) has n distinct roots, then Np(z) is a degree n rational map .

(ii) If q(z) = p(az + b), then Np is conjugate to Nq by the map z 7→ az + b.

(iii) The fixed points of Np are exactly the roots α1, . . . , αd of p and ∞.

(iv) The derivative at z is given by N ′p(z) =
p(z)p′′(z)

[p′(z)]2
.

(v) Infinity is the only fixed repeller of Np, with derivative d
d−1 .

(vi) If α is a root with multiplicity m, then N ′p(α) = m−1
m . Thus a simple root is a superat-

tracting fixed point.

Definition. We say that p(z) ∈ Pd(1) if

p(z) = zd + ad−1z
d−1 + ad−2z

d−2 + . . .+ a0

where |ai| ≤ 1. Such a polynomial is said to be centered if ad−1 = 0.

So that we have some initial idea of where the roots lie, we shall make the restriction that

p(z) is a centered polynomial in Pd(1). This normalization can be achieved by precomposing

p(z) with an affine map, which by (ii) has no qualitative effect on the behavior of N .
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Proposition 1.4. If p(z) =
d∏
i=1

(z − αi) is a centered polynomial in Pd(1), then all of the

roots αi lie in the disk of radius 2 about the origin. Furthermore, the sum of the roots is 0.

Proof. The fact that |αi| < 2 follows from the fact that |zd| > |p(z)−zd| for |z| > 2. Since

the coefficient of zd−1 is equal to the sum of the roots, this yields the second fact.

Now we give a geometric interpretation of Newton’s method in the complex plane. Note

that

p′(z)

p(z)
=

d∑
j=1

∏
i6=j

(z − αi)

d∏
i=1

(z − αi)
=

d∑
i=1

1

z − αi
.

Thus

N(z) = z − 1
d∑
i=1

1
z−αi

.

This gives us the size of the “step” that is taken by one iteration of the map as a function of

the vectors to the roots. We shall use this fact to understand the behavior of N away from

the roots of p. First, we state Lucas’ Theorem, which tells us that the poles of N (which

are the critical points of p) must lie inside the convex hull of the roots. We shall denote the

convex hull of the roots by 〈{αi}〉.

Theorem 1.5. (Lucas, 1874) Let p(z) be polynomial with coefficients in C. Then the zeros

of p′ lie inside the convex hull of the roots of p.

Proof. Note that

p′(z) = p(z)
d∑
i=1

1

z − αi
.

Suppose that p′(β) = 0 for some β outside 〈{αi}〉. But then all the vectors from β to the

αi lie in a half-plane through β, and so their inverses 1
αi−β also lie in a (possibly different)

half-plane. But then these vectors cannot sum to zero, giving a contradiction.

The next lemma tells us that N moves points outside the convex hull of the roots toward

it. The proof is similar to that of Lucas’ Theorem (Theorem 1.5).

Lemma 1.6. If z is outside 〈{αi}〉, then N(z) lies on a ray emanating from z and passing

through 〈{αi}〉.

Proof. We shall show that the vector N(z)− z lies in the wedge based at z and containing

〈{αi}〉. Note that each of the vectors αi − z lie in this wedge, and so their inverses lie in a
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second wedge with the same angle. Since this angle is less than π
2 , we have

∑d
i=1

1
z−αi also

lying in this second wedge. But this means that its inverse

1
d∑
i=1

1
αi−z

= N(z)− z

lies in the original wedge.

For a point z of very large modulus, N(z) is essentially the same as (1− 1
d)z, since the

difference between z − αi and z is negligible. The following lemma gives explicit bounds on

this difference.

Lemma 1.7. If |z| > 2, then N(z) ∈ D 2
d
(d−1
d z).

Proof. For ease of calculation, we change coordinates by an affine isometry so that z = 0,

and that the αi lie in a disk of radius 2 about some point c on the real line, with c > 2. Let

N̂ denote the map in this new coordinate system, and α̂i be the corresponding roots. Since

α̂i ∈ D2(c),

1

α̂i
∈ D 2

c2−4
(

c

c2 − 4
)

Summing the d terms, ∑ 1

α̂i
∈ D 2d

c2−4
(

cd

c2 − 4
)

and inverting,

N̂(0) =
1∑d

i=1
1
α̂i

∈ D 2
d
(
c

d
)

Changing back to our original coordinates gives the desired result.

To make the estimate in the previous lemma, we approximated 〈{αi}〉 by D2. A similar

result, which identifies a half-plane containing N(z), can be obtained for all z outside of

〈{αi}〉. The argument is almost identical to that in Lemma 1.7, but uses a half-plane

instead of D2. We omit the proof here (see [Fr] or [M]).

Figure 1.3: A pictorial version of Theorem 1.8.
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Theorem 1.8. Let ` be a line separating z from the roots, and `′ be a line parallel to `

lying 1/d of the way between z and `. Then `′ separates z from N(z). (see Figure 1.3).

Proposition 1.9. ([M]) There is an open set U in C, homeomorphic to a disk, such that

N |U is a diffeomorphism from U onto C−〈{αi}〉. For z 6∈ 〈{αi}〉, we have (N |U )−n(z)→∞
as n→∞.

Proof. The inverse images of ∞ are itself and the roots of p′ that are not also roots of p.

By Theorem 1.5, these lie inside 〈{αi}〉. Also, the critical points of N are the simple roots

of p and the roots of p′′; these must also lie in the convex hull by the same theorem.

The quotient space of C by 〈{αi}〉 is homeomorphic to the sphere. Denote the image of

〈{αi}〉 under this identification by H. We define a map N̂ from this space to itself by

N̂(ẑ) =


H if ẑ = H;
H if the straight line from z to N(z) crosses 〈{αi}〉;
N(z) otherwise.

The map N̂ is continuous because all points outside H move toward it (Lemma 1.6). In-

finity is a regular point of the mapping N̂ , and N̂−1(∞) = {∞}. The map N̂ has local

degree +1 everywhere except on N̂−1(H). Thus every point of the quotient except H has

exactly one inverse image under N̂ , and so N−1 is well defined except on 〈{αi}〉. Set

U = N−1
(
C− 〈{αi}〉

)
.

The last statement follows from Theorem 1.8.

Our main analysis will concentrate on the set B(α). We summarize some important

results about this set in the following.

Theorem 1.10.

(i) The set B(α) is simply connected.

(ii) Infinity lies on the frontier of B(α) for every root α of p.

(iii) If the local degree of N restricted to B(α) is s, then B(α) approaches∞ in s−1 different

directions.

We shall omit the proof of this theorem here, but note that parts (i) and (iii) have been

proven by F. Przytycki in [Pz] using classical arguments. M. Shishikura has also shown (i)

using holomorphic surgery. Property (ii) is an immediate consequence of a theorem of Fatou

[F3] which states that if a map has a single repelling fixed point with all other fixed points

being sinks, then that fixed point lies on the boundary of the basins of attraction of each of

the sinks. All three of these arguments essentially come down to showing that the family

{N−n} of iterates of one branch of the inverse is a normal family, and that the limit function

must be constant.
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Computer studies of the case with the degree of N |B(α) is greater than 1 can be seen in

the next chapter, especially Figure 2.5 and Figure 2.6.
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2. A Newton’s Method Picture Book

In this section, we give the results of several of our computer studies of the convergence

of Newton’s method for various polynomials. This should help develop some intuition for

the result of Chapter 3.

The pictures in this section were computed in the following way: Take an n× n grid of

points over some region in the complex plane. Typically, we take n = 1000 and the region

to be the square with lower left corner −2 − 2i and upper right corner 2 + 2i. Using each

point in the grid as a starting value, apply Newton’s method, iterating at most m times. If

the orbit of the point comes within ε of a root α, color that point according to the number

of iterations required. We color those points that converge in 1 iteration white, and those

that took m tries black, with levels of grey in between (see Figure 2.1). Typically, m = 30

and ε = 10−8. Refer to the appendix for the exact values used in each picture.

Figure 2.1: The
gray levels used.

Figure 2.2: The convergence speeds for Np where p(z) =
z3 − 1.

Pictured in Figure 2.2 is a study of the convergence of Np for p(z) = z3− 1. The 3 roots

of unity are in the white regions, and 0 is a pole. The Julia set of N lies inside the dark gray

areas.
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Figure 2.3: Newton’s method for a cubic poly-
nomial which has an attracting period 2 orbit.

Figure 2.4: Newton’s method for a quartic poly-
nomial with two attracting period 2 orbits.

Figure 2.3 shows the behavior of Newton’s method for a cubic where there is an attracting

period 2 orbit. One point on this orbit lies inside the large black blob in the center, and the

other lies in the tiny black dot between the two closest roots. All the other black regions are

preimages of these two.

Figure 2.4 shows Newton’s method for the polynomial (z2 − 1)(z2 + 0.16). In this case

there are two attracting period two orbits: these lie on the real line and are approximately

{.3192,−.2599} and {−.3192, .2599}. Four of the large black disks in the center of the picture

contain these orbits; all of the other black disks are preimages of these. For both Figure 2.3

and Figure 2.4, these attracting orbits persist for small perturbations of the polynomials. In

Figure 2.3, N2 is polynomial-like of degree 2 near the attracting orbit (see [DH]) – all of the

behavior of the family z 7→ z2 + c occur for various perturbations of this map. The map in

Figure 2.4 is polynomial–like of degree 3.
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Figure 2.5: Sylvester the cat.

In Figure 2.5, the central root of the polynomial has an extra critical point in its imme-

diate basin. This increases the local degree of N and so creates an extra approach to ∞.

Note that near the edge of the picture, the sum of the “widths” of these two approaches is

approximately the same as the width for the roots with only one approach to ∞. Figure 2.6

shows a nearby polynomial, where we have adjusted things so that the central root has 3

approaches to ∞. Note that although the width on one side has widened, the other side has

closed off somewhat.

Figure 2.6: Sylvester squints.
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Figure 2.7: A degree 10 polynomial. Figure 2.8: Another degree 10 polynomial.

Figure 2.7 and Figure 2.8 show Newton’s method on 2 typical degree 10 polynomials.

Again, note how the immediate basins distribute themselves somewhat equally as they tend

toward the edge of the pictures. We will make this statement more precise in the next

chapter.

Figure 2.9: Newton’s method for (z2 + 1)(z − 1)2, which has a double
root at 1.

Figure 2.9 shows Newton’s method for a quartic polynomial with a double root at 1.

Note that the immediate basin of 1 is nearly twice as wide as that for the other 2 roots,

although the convergence is much slower, since N ′(1) = 1
2 .
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Figure 2.10: Newton’s method for z8 − 1. The large black area at the
center is due to the fact that convergence is very slow near 0, not because
of an attracting periodic orbit. Zero is the only pole of Np, and lies on the
boundary of the immediate basins of all eight roots.
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3. Estimating the Width of the Immediate Basins

We have seen several examples in which the immediate basin of a root tends toward

a given “width” as distance from the root tends toward ∞. In this chapter, we explicitly

estimate this width. Throughout this section, we assume that p(z) is a centered polynomial

in Pd(1) of degree d ≥ 4. (We could take d ≥ 2, but a few of the estimates give better

bounds for d ≥ 4.)

3.1 Building a Model for N

We shall attempt to understand B(α) by conjugating N |B(α) to another map M from the

open unit disk to itself. Let h : D → B(α) be the Riemann map which sends 0 to the root

α. Since h is an analytic diffeomorphism, we can define M by the diagram

B(α)
N−→ B(α)xh xh

D
M−→ D

The form of M depends on the number of critical points of N that lie in B(α). If there

are s such critical points, then M must be an analytic, degree s+ 1 mapping of D to itself.

By the following proposition, it must be a finite Blashke product. (Adapted from [Bu],

pp. 197–198)

Proposition 3.1. If f is an analytic, degree s+1 map of D to itself, then there exist

µ0, . . . µs ∈ D and θ ∈ R such that

f(z) = eiθ
s∏
j=0

z − µj
1− µjz

for all z ∈ D.

Proof. (i) ([Ra]). First, we show that limr→1 |f(reiφ)| = 1 for φ ∈ R. Suppose not. Then

we can find a sequence {zn} ∈ D converging to the boundary, but for which {f(zn)} converges

to some interior point w, and with f(zn) 6= w for all n. Let a0, . . . , ak be distinct preimages

of w, with multiplicities m0, . . . ,mk. Choose ε > 0 and choose disjoint neighborhoods Uj of

aj which satify

(a) Uj ⊂ D

(b) each point z 6= w in Dε(w) has exactly mj distinct preimages.

Now choose R < 1 so that

U0 ∪ . . . ∪ Uk ⊂ DR(0).
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For n large enough, we have |zn| > R, f(zn) 6= w, and

f(zn) ∈ f(U0) ∩ . . . ∩ f(Uk) ∩Dε(w).

Thus the point f(zn) has m0 + . . .+mk = s+ 1 distinct preimages in U0 ∪ . . . ∪ Uk, as well

as the preimage zn which lies outside of DR. This means that the point zn has s+ 2 distinct

preimages, contradicting the fact that f is of degree s+ 1.

(ii) ([F4]). Let µ0, . . . , µs be the zeros of f in D, repeated according to multiplicity, and

let

g(z) =
s∏
j=0

z − µj
1− µjz

.

The functions f/g and g/f are both holomorphic functions in D, and by (i), we have

lim
r→1

∣∣∣∣∣f(reiφ)

g(reiφ)

∣∣∣∣∣ = lim
r→1
|f(reiφ)| = 1.

Applying the Maximum Modulus Principle to f/g and g/f , we have

∣∣∣∣∣fg
∣∣∣∣∣ =

∣∣∣∣∣ gf
∣∣∣∣∣ = 1

on all of D. Therefore,

f(z) = eiθ
s∏
j=0

z − µj
1− µjz

as desired.

Since the roots of p are fixed points of N , we must have M(0) = 0. This gives

M(z) = zeiθ
s∏
j=1

z − µj
1− µjz

where N has s critical points in B(α). For a simple root α of p, N ′(α) = 0, and so we may

take µs = 0. In this case we may also conjugate away the eiθ term. The easiest case to keep

in mind is a simple root with no “free critical points” in B(α); here M(z) = z2.

In all cases, M has an attracting fixed point at 0, and s repelling fixed points ξ1 . . . ξs
which lie on the unit circle. Because M preserves the unit disk, the derivative at each of

these fixed points must be real and positive.
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3.2 Manning’s Construction

Let ξ be a repelling fixed point of M . (When M(z) = z2, ξ = 1.) In general, N ′(∞) 6= M ′(ξ),

so we cannot hope to analytically extend the conjugacy h to a neighborhood of the repeller.

However, following Manning [M], we can estimate the angle B(α) makes at ∞ by first

linearizing N and M near ∞ and ξ, and then taking the
log(d−1d )
logM ′(ξ) power to conjugate the

linear repulsions.

There is a unique analytic map LM tangent to the identity at ξ which conjugates M near

ξ to multiplication by its derivative near 0. (For z2, this map is log(z) .) Similarly, there is

a unique map LN which conjugates N to its derivative at ∞ with L′N (∞) = 1. Finally, the

map

R = z
log(d−1

d
)

logM ′(ξ)

defined on the left half plane sends 0 to ∞ and conjugates multiplication by M ′(ξ) at 0 to

multiplication by d−1
d at ∞. We follow R with multiplication by a complex constant ρ, to

be specified shortly. This can be represented in the following diagram, or refer to Figure 3.1.

C,∞ R←− C, 0
LM←− D, ξ

h−→ B(α),∞ LN−→ C,∞y×d−1d y×M ′(ξ) yM yN y×d−1d
C,∞ R←− C, 0

LM←− D, ξ
h−→ B(α),∞ LN−→ C,∞

Let V be the image under LN of the neighborhood of ∞ where it is defined, let S be the

composition LNhL
−1
M R−1, and let W = S−1(V).

Figure 3.1: The various maps and regions involved in the construction of S.

Note that W is an open wedge which subtends an angle at ∞ of

π
log( d

d−1)

log(M ′(ξ))
.

The map S is an analytic, univalent function which commutes with multiplication by d−1
d .

At this point, we could estimate the derivative of S at some point w ∈ W , and apply the

Koebe 1/4 Theorem (see page 29) to obtain a lower bound on the width of V near S(w). In
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fact, this would give us estimates at all points of the form of the form
(
d−1
d

)j
z lying in V .

The problem with this approach is that this estimate only gives us the width at a discrete

set of points, instead of through the whole of V . In the next few sections, we shall present

an alternative approach which was suggested to us by A. Douady.

3.3 The Opening Modulus of a Sector

We now have a univalent map S between the two sectorsW and V , each of which is invariant

under multiplication by d−1
d . In order to estimate the “width” of V , we will now introduce

the notion of the opening modulus of a sector. Although this can be done in the more general

situation of any holomorphic map with a repelling fixed point (see [BD]), we will only discuss

the linear case.

Let p be a repelling fixed point of the linear map z 7→ cz, and let ∆ be a disk centered

at p. In our case, p =∞, and c = d−1
d . If we define the equivalence relation

z ∼ cnz,

then

T = (∆− {p}) / ∼

is a Riemann surface of genus 1, isomorphic to the torus

C/ (Z log c⊕ Z2πi) .

Let $ be the projection

$ : ∆− {p} → T.

If V is a sector which is invariant under multiplication by c, then $(V) will be an annulus

AV in the torus T . We define the opening modulus of the sector V (relative to c) to be the

modulus of the annulus AV (see below).

Any annulus A can be mapped by an analytic diffeomorphism onto a unique “standard

annulus” whose inner boundary is the unit circle and with outer boundary the circle of radius

e2πm for some m ∈ R+. In this case, the modulus of A is said to be m. Using this definition,

the modulus of an annulus A is clearly a conformal invariant. That is, if f is a univalent

conformal mapping of an annulus A onto an annulus A′, then A and A′ must have the same

modulus. It also follows that the opening modulus of a sector V is a conformal invariant.

Lemma 3.2. The opening modulus of the sector W (and hence of V) is

π

log(M ′(ξ))
.
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Figure 3.2: Calculating the modulus of the sector.

Proof. For notational convenience, we set

θ = π
log( d

d−1)

log(M ′(ξ))
,

the angle W subtends at ∞. As we mentioned earlier, our repelling fixed point p is ∞. We

take ∆ to be the exterior of the disk of radius d
d−1 , and set Â to be the part of W for which

d
d−1 < |z| < 1.

For any complex constant k, the map φk(z) = log(k/z) is analytic on ∆− {∞}, and its

image is (part of) the universal cover of the torus T . Choose a lift of the torus T so that

$ = π ◦ φk, and choose k so that Ã = φk(Â) ∩ T̃ has its upper right corner at the origin.

Note that Ã is a rectangle of width log(d−1
d ) and height θ. Then ζ = exp(

2πi

log(d−1
d )

z) maps

Ã onto the “standard annulus”

1 < |z| < exp

(
2πθ

log(d−1
d )

)
,

so the modulus of A is
θ

log(d−1
d )

=
π

log(M ′(ξ))
.

The modulus of an annulus (or a sector) is, in some sense, a measure of its “width”.

That is to say, the larger the modulus, the thicker the annulus. To make this statement

more precise, we shall have to recall some basic facts about extremal length in the next

section.

21



3.4 An Extremely Short Course on Extremal Length

We will only need a few basic facts about extremal length, so we present them here. This

topic usually comes up in a discussion of quasiconformal mappings (which we will not be

discussing), although it is also useful for conformal maps. A standard reference on the

subject is [A].

Let Γ be a family of curves in the plane. The extremal length of Γ is a measure of the

average minimal length of the curves in Γ.

We call a function ρ allowable if it satisfies:

1. ρ ≥ 0 and is measurable.

2. 0 <
∫∫
ρ2dx dy <∞, where the integral is taken over the whole plane.

For such a ρ, and a curve γ ∈ Γ, we define

Lγ(ρ) =

{ ∫
γ
ρ |dz|, if ρ is measurable on γ (as a function of arc length);

∞, otherwise.

Set

L(ρ) = inf
γ∈Γ

Lγ(ρ).

Definition. The extremal length of Γ is the quantity

λ(Γ) = sup
ρ

(L(ρ))2∫∫
ρ2dx dy

for all allowable ρ.

Definition. If Γ1 and Γ2 are families of curves such that every γ2 ∈ Γ2 contains a γ1 ∈ Γ1,

we say that Γ1 < Γ2. (There are “fewer” curves in Γ2, and they are longer.)

Remark. Note that Γ2 ⊂ Γ1 ⇒ Γ1 < Γ2 !

We shall need the following two standard facts:

Theorem 3.3. If Γ1 < Γ2, then λ(Γ1) < λ(Γ2).

Theorem 3.4. λ(Γ) is a conformal invariant.

Lastly, we give (without proof) a few examples of families of curves and their corre-

sponding extremal length.

Example. Let R be a rectangle of height h and width w, and let Γ be the set of curves

joining the top to the bottom. Then λ(Γ) = h/w.
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Example. Let Γ1 be the set of curves which join the boundary arcs of the annulus r1 <

|z| < r2. Then

λ(Γ1) =
1

2π
log

r2

r1
.

Note that this is the same as the modulus of the annulus. In fact, this is commonly used as

a definition of the modulus.

Example. Let Γ2 be the set of closed curves in the annulus r1 < |z| < r2 that have nontrivial

homotopy, and Γ1 be as before. Then

λ(Γ2) =
1

λ(Γ1)
.

3.5 The Larger the Modulus, the Thicker the Annulus

In this section we make more explicit the relationship between the modulus and the thick-

ness of an annulus. Mitsuhiro Shishikura very kindly pointed out to us how this could be

accomplished. We shall prove the following:

Proposition 3.5. Let T be a torus isomorphic to C/(Z ⊕ Zτ), and let A be a nontrivial

annulus contained in T with modulus(A) = m. Then the distance between the boundary

curves of A is at least
2πke

π
2m

1 + e
π
m

where k = min{1, Im(τ)}.

Proof. Consider an open ellipse with its center at 0, whose major axis is the inter-

val [−r+1/r
2 , r+1/r

2 ] and with its minor axis being [−r−1/r
2 i, r−1/r

2 i]. Remove the intervals

(−r+1/r
2 ,−1] and [1, r+1/r

2 ) from that ellipse, and denote the resulting set E. Let Γ be the

set of curves in E which join the upper and lower portions of the boundary of the ellipse.

Figure 3.3: The rectangle mapped to the ellipse E, and some curves in Γ.
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Then λ(Γ) = log r
2π . This is because the map cosh(z) maps the open rectangle (− log r, log r)×

(0, πi) univalently onto E and the set of curves joining top to bottom in the rectangle onto

Γ.

We may assume that A lies in T so that (in the cover) it is homotopic to the real axis.

Suppose that A has a “narrow part” of width δ. Then scale the ellipse E by δ/2 and embed

it in T so that the interval [− δ
2 ,

δ
2 ] corresponds to the narrow part. (See Figure 3.4.)

Figure 3.4: The torus T , with the embedded ellipse E and the annulus A (shaded).

Let k = min{1, Im(τ)}. Then if we choose

r =
k

δ
+

√√√√(k
δ

)2

− 1

the ellipse E will be injectively embedded.

Let ΓA be the family of nontrivial closed curves in A, and recall that λ(ΓA) = 1/m,

where m is the modulus of A. Also, notice that every curve in ΓA contains a curve from Γ,

so Γ < ΓA. We can apply Theorem 3.3 to obtain

1

m
= λ(ΓA) ≥ λ(Γ) =

log r

2π
=

log

(
k
δ +

√(
k
δ

)2
− 1

)
π

.

Now solve for δ,

δ ≥ 2πke
π
2m

1 + e
π
m
.
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3.6 The Width near Infinity

We can now combine the results of Lemma 3.2 and Proposition 3.5 to put a lower bound on

the size of the sector V near ∞.

Theorem 3.6. For any R sufficiently large, there is a point zR ∈ V , with |zR| = R, which

is the center of a disk of radius at least

R tanh

 π
√
M ′(ξ)

1 +M ′(ξ)
log

(
d

d− 1

) ≥ 2πR

3d
(
1 +

√
M ′(ξ)

)
contained entirely in V .

Proof. Recall from Lemma 3.2 that the modulus of V is π
log(M ′(ξ)) . This is also the modulus

of the corresponding annulus AV lying in the torus C/(Z log d
d−1 ⊕ Z2πi). The exponential

function maps the lift of the annulus back onto V , so we can use that to pull our estimates

over.

By Proposition 3.5, we know that the “thinnest part” of the annulus is at least

δ =
2π
√
M ′(ξ)

1 +M ′(ξ)
log

d

d− 1

wide. (We had to rescale the result by a factor log d
d−1 to account for the different sized

torus.) This means there is a curve running through the annulus on which we can center

disks of radius δ
2 which stay in the annulus. Index these disks by their centers w. The

exponential of the disk centered at w is a bean-shaped blob, which contains a disk of radius

|ew|(e
δ
2 − e−

δ
2 ) = |ew| sinh

δ

2

and centered at ew cosh δ
2 . For each R, we set zR = ew cosh( δ2); if there is more than one w

that works, pick one arbitrarily. Substituting
zR

cosh(δ/2)
for ew tells us that the radius of the

disk centered at zR is |zR| tanh(δ/2).

Notice that, since ξ is a repelling fixed point, M ′(ξ) > 1, so

tanh

 π
√
M ′(ξ)

1 +M ′(ξ)
log(

d

d− 1
)

 ≥ tanh

 π

1 +
√
M ′(ξ)

1

d

 .
Then, for x ≤ 1 we have

tanh(x) ≥ x− x3

3
>

2x

3
,

which gives the final result.

What we have really done here is find the width of a “channel” through V which starts

at infinity and heads off toward 0. Since the map LN : B(α)→ V is analytic and tangent to

the identity at ∞, we actually have an estimate for the width of B(α) near ∞, because we

can choose our point zR as large as we like.
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Figure 3.5: The universal cover of T mapped via the exponential to a disk around ∞. Some of
the lifts of the annulus AV are shown, mapping onto the sector V. Also shown is the curve running
through AV and several of the disks of radius δ/2 (in dark gray).

3.7 Some Tedious, But Necessary, Calculations

We have found a disk that lies entirely within B(α), but it is rather far away. The

following lemmas provide a lower bound on how much N contracts this disk as we iterate.

The first lemma is essentially the same as Lemma 3.1 in [M], although the constants have been

changed to better suit our circumstances. Lemma 3.9 is also similar to Lemma 3.2 in [M],

although the proof is somewhat different. All of the proofs are rather tedious calculations,

so be forewarned. Now is a good time for a cup of coffee.

Lemma 3.7. If |z| > 2 then ∣∣∣∣zN ′(z)

N(z)

∣∣∣∣ ≥ (1− 8

3|z|2
)2

.

Proof.∣∣∣∣zN ′(z)

N(z)

∣∣∣∣ =

∣∣∣∣∣z · [p(z)][p′′(z)]

[p′(z)]2
· [p′(z)]

[zp′(z)− p(z)]

∣∣∣∣∣
=

∣∣∣∣∣z · [z
d(1 + ad−2z

−2 + · · ·)][d(d− 1)zd−2(1 + (d−2)(d−3)
d(d−1) ad−2z

−2 + · · ·)]
[dzd−1(1 + d−2

d ad−2z−2 + · · ·)] · [(d− 1)zd(1 + d−3
d−1ad−2z−2 + · · ·)]

∣∣∣∣∣
=

∣∣∣∣∣(1 + ad−2z
−2 + · · ·)(1 + (d−2)(d−3)

d(d−1) ad−2z
−2 + · · ·)

(1 + d−2
d ad−2z−2 + · · ·)(1 + d−3

d−1ad−2z−2 + · · ·)

∣∣∣∣∣
set x = |1/z|

≥ (1− x2 − x3 − · · ·)2

(1 + x2 + x3 + · · ·)2

=
( −1

1−x + x+ 2)2

( 1
1−x − x)2
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=
(1−x−x2

1−x )2

(1−x+x2

1−x )2

=
(

1− 2x2

1− x+ x2

)2

Since 2
1−x+x2

≤ 8
3 for 0 ≤ x ≤ 1

2 ,

≥
(

1− 8x2

3

)2

≥
(

1− 8

3|z|2
)2

.

The following lemma is a souped-up version of Lemma 1.7, and gives some estimates on

how quickly points move in toward the roots.

Lemma 3.8. For z large, choose k > 2 and let n be the largest integer such that |Nn(z)| > k.

Then

|N i(z)| − 2 ≥ (
d

d− 1
)n−i(k − 2), i = 0, . . . , n

Proof. From Lemma 1.7, we obtain

|N(z)| ≤
d−1
d |z|+ 2

d
= d−1

d (|z| − 2) + 2

and so
|N(z)| − 2

|z| − 2
≤ d− 1

d
.

Applying this n− i times, we get

|Nn(z)| − 2

|N i(z)| − 2
=
|Nn(z)| − 2

|Nn−1(z)| − 2
· |N

n−1(z)| − 2

|Nn−2(z)| − 2
· · · |N(z)(i+ 1)| − 2

|N i(z)| − 2

≤ (
d− 1

d
)n−i.

Rewriting,

|N i(z)| − 2 ≥ ( d
d−1)n−i (|Nn(z)| − 2)

≥ ( d
d−1)n−i(k − 2).

For a final technical lemma, we combine Lemma 3.8 and Lemma 3.7 to get a bound on

the nonlinearity of n iterations of N .
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Lemma 3.9. Let |z| > 2 + 2
√
d, d ≥ 4, and let n be the largest integer such that |Nn(z)| >

2 + 2
√
d. Then ∣∣∣∣∣z(Nn+1)′(z)

Nn+1(z)

∣∣∣∣∣ ≥ 1/2.

Proof. For notational convenience, let k = 2 + 2
√
d. We have∣∣∣∣∣z(Nn+1)′(z)

Nn+1(z)

∣∣∣∣∣ =
n∏
i=0

∣∣∣∣∣N ′(N i(z))N i(z)

N i+1(z)

∣∣∣∣∣
Applying Lemma 3.7,

≥
n∏
i=0

(
1− 8

3|N i(z)|2
)2

= exp

(
2

n∑
i=0

log(1− 8

3|N i(z)|2
)

)
.

Note that log(1− ax) ≥ x
c log(1− ac) when 0 ≤ x ≤ c ≤ 1

a . We take a = 8/3, c = 1/k2 and

x = 1/|N i(z)|2 to obtain∣∣∣∣∣z(Nn+1)′(z)

Nn+1(z)

∣∣∣∣∣ ≥ exp

(
2k2 log(1− 8

3k2
)
n∑
i=0

1

|N i(z)|2

)
Applying the previous lemma,

≥ exp

2k2 log(1− 8

3k2
)
n∑
i=0

1

(2 + ( d
d−1)n−i(k − 2))2


≥ exp

2k2 log(1− 8

3k2
)
∫ ∞

0

dx(
2 + (k − 2)( d

d−1)x
)2


Now we need to calculate the integral in the exponent. To make things a bit less messy, we

set r = d
d−1 and a = k − 2. Then

∫ dx

(2 + arx)2 =
1

log r

(
1

4
log

rx

2 + arx
+

1

2(2 + arx)

)
.

So the value of the improper integral is

1

log r

(
1

4
log

2 + a

a
− 1

2(2 + a)

)
.

If we rewrite r and a in terms of d, (remember a = k − 2 = 2
√
d), we obtain

1

8
− 1

6
√
d

+O
(

1

d

)
.
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Thus ∣∣∣∣∣z(Nn+1)′(z)

Nn+1(z)

∣∣∣∣∣ ≥ exp

(
k2

4
log(1− 8

3k2
)

)
≥ 1/2,

where we have used k = 2 + 2
√
d and d ≥ 4.

Remark. Notice that for any c > 0, we could take k = 2 + c
√
d and still obtain a bound

on the nonlinearity of N . This is because the integral in the proof is bounded below by 1
2c2

.

The resulting bound on the nonlinearity tends to 0 as c→ 0 and to 1 as c→∞. Specifically,

c = 1 gives a bound of 0.0518, which seems quite low considering the numerical experiments.

It is probably an artifact of the proof.

3.8 Finally, a Result!

We are now ready to estimate the size of the part of B(α) corresponding to the fixed point

ξ of M at a reasonable distance from the roots.

We will need to use the Koebe 1
4 Theorem in this proof, so we state it here. A proof of

this can be found in many univalent function theory texts, for example [Du].

The Koebe 1/4 Theorem. Let f : DR(c)→ C be an analytic, univalent mapping. Then

the disk of radius
R

4
|f ′(c)|

is contained in the image of DR(c).

Theorem 3.10. Let ξ be a repelling fixed point of M . Then B(α) contains a disk centered

at tξ of radius

(2 + 2
√
d)π

12d
(
1 +

√
M ′(ξ)

) ,
where |tξ| = 2 + 2

√
d.

Proof. By Theorem 3.6, for every R large enough, we obtain a certain sized disk lying inside

B(α) which is centered at zR. Let z0 be one of these zR which satisfies |Nn(z0)| = 2 + 2
√
d

for some n. As long as we stay outside of the convex hull of the roots, N(z) is a univalent

function (by Proposition 1.9), and so we can apply the Koebe 1/4 theorem to obtain a disk

centered at tξ of radius at least

|z0|π
6d
(
1 +

√
M ′(ξ)

) |(Nn)′(z0)| =
|tξ|π

6d
(
1 +

√
M ′(ξ)

) ∣∣∣∣∣z0(Nn)′(z0)

Nn(z0)

∣∣∣∣∣
As a result of Lemma 3.9, the radius is at least

(2 + 2
√
d)π

12d
(
1 +

√
M ′(ξ)

)
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In the simplest case (a simple root with no “free critical points”), we know that M(z) =

z2 and ξ = 1, so we have immediately the following estimate:

Corollary 3.11. If α is a simple root of the polynomial p(z) and p′′(z) 6= 0 for all z ∈ B(α),

then B(α) contains a disk of radius at least

(2 + 2
√
d)π

28d
,

centered at a point t of norm 2 + 2
√
d.

This says that the width of the basin of a simple root takes up at least 1/56d of the

circle of radius 2 + 2
√
d. We would like an estimate that covers all cases, however. The next

lemma gives us the tool we need.

Lemma 3.12. Let α be a root of multiplicity m < d be such that N |B(α) is degree s + 1.

Let ξ1, . . . , ξs be the repelling fixed points of the corresponding Blaschke product M . Then

s∑
i=1

1

1 +
√
M ′(ξi)

≥ 1

1 +
√

2m
2m−1

.

Proof. First, note that m < d implies s ≥ 1. For if s = 0, N |B(α) is conjugate to a linear

contraction on C. This either forces N to have countably many fixed points on the boundary

of B(α), or that B(α) = C. Both cases occur only for m = d.

Since s > 1, N is conjugate to a degree s + 1 Blaschke product M : D → D, which

extends to a rational map of C. This map has fixed points at 0, ∞, and ξ1, . . . , ξs, where

|ξi| = 1.

We now use a formula of Fatou [F1] which relates the derivatives at the fixed points of

a rational map. ∑
fixed points

1

M ′(zi)− 1
= −1

Since M ′(0) = M ′(∞) = m−1
m , we have

s∑
i=0

1

M ′(ξi)− 1
= 2m− 1.

We know the ξi are repelling fixed points, so the maximum value of
∑ 1

1+
√
M ′(ξi)

occurs

when M ′(ξi) is the same for all i, and the minimum when the derivative at one fixed point is

small and the derivatives at the others are allowed to get arbitrarily large. Solving for each

of these cases yields the desired inequality.

As an immediate consequence, we obtain our main result:
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Theorem 3.13. Let α be a root of multiplicity m, with N |B(α) of degree s. Then there are

points t1, . . . , ts of magnitude 2+2
√
d for which a disk of radius ri centered at ti lies entirely

within B(α). These radii satisfy

s∑
i=1

ri ≥
(2 + 2

√
d)π

12d
(
1 +

√
2m

2m−1

)
Proof. We just apply Theorem 3.10 to each of the s fixed points of the map M , and then

use Lemma 3.12 to put them together.

This theorem says, roughly, that the basin of any given root α takes up at least 1
56d of

the circumference of the circle of radius 2+2
√
d, and even more if α is a multiple root. That

is,

Corollary 3.14. Let p(z) be a centered polynomial in Pd(1), and |z| ≥ 2 + 2
√
d. Then

the probability that Nn(z) will converge to a root of p is at least 1
56d .

If we want to use Newton’s method to find all of the roots of a polynomial without

deflating, then for each root αi, we need some way to pick at least one initial condition lying

in B(αi). Since we have a lower bound on the width of this set when it crosses a certain

circle, we can find it by dividing that circle up into subintervals of that size and put a point

in each subinterval.

Corollary 3.15. Let p(z) be a centered polynomial in Pd(1). Let t1, . . . , tn be points

equally spaced around the circle of radius 2 + 2
√
d, where n ≥ 56d(d − 1). Then for each

root αi of p(z), at least one of the points tj lies in B(αi).

Proof. First, consider polynomials p with d distinct roots. The Newton method map N

has 2d − 2 critical points, but d of them are coincident with the d roots. This leaves d − 2

free. The smallest width basin can occur when all d − 2 free critical points iterate to the

same root α. In this case, B(α) has d− 1 canals reaching to ∞, whose total width at radius

2 + 2
√
d is at least

(2 + 2
√
d)π

28d
. Thus there is one which has a width of at least a factor of

1
d−1 of the total.

For a polynomial with multiple root of multiplicity m, the degree of the corresponding

Newton map N is d −m + 1 (or less if there are other multiple roots). Since the multiple

root must also have a critical point of N in its basin (although not necessarily coincident

with the root), we have d − m − 1 “free” critical points. Placing them all in the basin of

a particular root gives a larger width than in the simple root case, and this concludes the

proof.
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Remark. Note that placing 56d points around the circle of radius 2+
√
d guarantees that at

least 2 of them lie in the basins of 2 different roots. This is because there are only d−2 “free

critical points” and so at least 2 roots must have immediate basins with only 1 approach to

∞. By the same reasoning, at least half of the roots have at most 2 approaches to infinity,

so 112d points are sufficient.
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4. Experiments and Conjectures

In this chapter we present the results of some computer experiments related to Newton’s

method and some conjectures arising from them.

4.1 Root Finding Algorithms

Corollary 3.15 tells us that, for a centered polynomial in Pd(1), we need no more than

56d(d − 1) points placed around the circle of radius 2 + 2
√
d to be sure that we have one

point in the immediate basin of each root. This information is not quite sufficient to state

a scheme for using Newton’s method which will guarantee convergence to all the roots— we

also need an upper bound on the iterations required. However, we can do so if we make

the assumption that an orbit which converges to a root does so at least linearly, decreasing

the distance to the root by a factor of d−1
d with each iteration. Unless multiple roots are

ruled out, this is the best we can hope for, since the Newton’s method for the polynomial

p(z) = zd has exactly this rate of convergence on the whole of C. Making this assumption,

we give the following:

Conjectured Algorithm 4.1. Let p(z) be a centered polynomial in Pd(1). Assuming

at least linear convergence, all the roots can be found by taking 56d(d − 1) points equally

spaced around the circle of radius 2 + 2
√
d, using each one as a starting value for Newton’s

method. If after d log
(

4+2
√
d

ε

)
iterations of N a particular starting value is not within ε of

a root, it should be abandoned in favor of the next point.

Remark. This algorithm takes at most O
(
d3 log

√
d
ε

)
evaluations of N to find an approx-

imate zero of p(z). This is for a worst-case scenario. Denote the points on the circle by

t1, . . . , tn where arg(t1) <arg(t2) < . . . <arg(tn). We should choose the initial points for N

in the order

t1, tn
2
, tn

4
, t3n

4
, . . . ,

which keeps the points tested “balanced” around the circle. Using this ordering instead of

t1, t2, t3, . . . should, in general, decrease the number of points required.

A common technique in root finding is to deflate the polynomial after finding some ap-

proximate roots. That is, a new polynomial of lower degree is obtained from the original by

dividing out by the approximate roots. The trouble with this technique is that it can intro-

duce significant numerical errors, because the deflated polynomial is only an approximate

factor of the original.

If deflation is not viewed to be a problem, we can modify Conjectured Algorithm 4.1 to

reduce the number of evaluations required. Again, we make the same assumption of at least

linear convergence.
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Conjectured Algorithm 4.2. Let p(z) be a centered polynomial in Pd(1) of degree d.

Place 112d points equally spaced around the circle of radius 2 + 2
√
d, and use each one as a

starting value for Newton’s method, iterating each at most d log
(

4+2
√
d

ε

)
times. If all of the

roots have not been found after testing all 112d points, the polynomial should be deflated

by those roots that have been found, and the process repeated.

This algorithm uses 112d points to find at least half of the roots, and then an additional

56d (or fewer) points to find half of those remaining, and so on. This means we do at most

O
(
d2 log(d) log

(√
d
ε

))
evaluations to find all of the roots.

Remark. Several numerical experiments seem to imply that the circle used can be of con-

stant radius (independent of d). Radius 3 seems to be adequate. Making the appropriate

modifications to Conjectured Algorithm 4.1 and Conjectured Algorithm 4.2 yield algorithms

with requiring O
(
d3 log

(
1
ε

))
and O

(
d2 log(d) log

(
1
ε

))
evaluations, respectively.

It also seems quite likely that the number of points required (56d(d−1)) is also too large.

Experiments indicate that the number required is actually between d(d− 1) and 2d(d− 1).

Although this does not decrease the order of the number of computations required, it does

have a significant impact in practice.

4.2 The Newton Flow

For a complex polynomial p(z), we define the Newton flow to be the ordinary differential

equation

ż = − p(z)

p′(z)
.

Notice that the Newton map Np is an Euler approximation to this O.D.E. with step size 1.

Or, more generally, the relaxed Newton’s method

Nh,p = z − h p(z)

p′(z)

is an Euler approximation with step size h.

It is often more convenient to work with the desingularized flow

ż = − p(z)

p′(z)
|p′(z)|

which has the same solution curves as the original. We will refer to this latter flow as Np.
This flow has been studied by several people in recent years. See [S1], [Sh], [JJT], [S2], and

[STW]. We present some of the elementary properties in Proposition 4.3. We omit the proof,

since these are readily verified.

34



Proposition 4.3.

(i) The attractors of Np are sinks located at the zeros of p(z).

(ii) ∞ is the only source.

(iii) The only other rest points are the zeros βi of p′. For a simple zero of p′, these are

hyperbolic saddles. Multiple zeros of p′ correspond to degenerate (multipronged) saddles.

(iv) Solution curves of Np are mapped by p to straight lines emanating from the origin.

Proposition 4.4. Let Cr be a circle of radius r centered at 0, and let p be a centered

polynomial in Pd(1) with d simple roots. Then the portion of Cr that lies in the basin of any

given root of p under Np approaches 1
d as d→∞.

Before we can prove this, we need a combinatorial lemma.

Lemma 4.5. Divide an oriented circle into d segments, and into each segment place the

numbers 1, 2, . . . , n in increasing order, where n ≥ d − 1. If pairs of the same symbol are

joined by non-intersecting arcs in the disk until no more pairs can be joined, the disk will

be divided into d regions. Each region will have all n symbols occurring exactly once on the

boundary of each region. (Count the paired symbols only once).

Figure 4.1: A circle with d = 6 segments, each containing n = 5 symbols.

Proof. We use strong induction on d. For d = 1, the disk already contains 1 region, with

all symbols only once on the boundary.

Now assume the lemma is true for all m < d. Connecting a pair of symbols divides the

disk into 2 regions. After identifying the paired symbols, we have 2 disks, one containing

k blocks of n symbols, and the other containing d − k such blocks. We may not reuse the
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symbol just paired, but since the hypothesis was assumed true for all pairings, this causes

no problem. After all the pairings are made, we have

1 + (k − 1) + (d− k − 1) = d− 1

arcs, giving us d regions with exactly n symbols on the boundary of each.

Proof of Proposition 4.4. By Proposition 4.3, we know that p maps the stable manifolds

of the saddles to rays of constant argument which terminate at the critical values of p. The

entire stable manifold of any given saddle must all be mapped onto the same ray, namely

that one with the same argument as the corresponding critical value. For |z| large, p(z) is

arbitrarily close to zd (in the spherical metric). If we label the regions between the rays with

the symbols 1, 2, . . . , d− 1 on some circle of large radius, we can pull these back by z1/d to

induce a labeling of the inverse circle. This labeling has d blocks of d − 1 symbols, as in

Lemma 4.5. Since |z| was chosen very large, the stable manifolds of the saddles are close to

some inverse image of the rays, and so form a pairing of the symbols. Therefore, each region

contains 1/d of the total circumference.

Figure 4.2: Newton’s method for the
polynomial (z2− 1)(z2 + .16), which has
2 attracting periodic orbits. This is the
same picture as Figure 2.4.

Figure 4.3: The stable manifolds of the sinks
and saddles for the flow Np, where p(z) =
(z2 − 1)(z2 + .16). The sinks are marked with
black dots.

We have done a number of computer experiments which seem to indicate a close relation-

ship between the Newton flow Np and the gross structure of the Newton map Np. Roughly

stated, the Julia set for the map lies “near” the stable manifolds of the saddles of the flow.

A proof of this statement, coupled with Proposition 4.4, would give an alternate version of

our Corollary 3.15. This same technique should also give estimates for the behavior of the

relaxed Newton’s method Nh,p.
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Figure 4.4: Newton’s Method applied to p(z) =
(z4 + 4)(z − 1.4535− .6535i)
(z − 1.4535 + .0465i)(z − .7465 − .6535i)(z −
.7465 + 0.0465i).

Figure 4.5: The Newton flow for the same
polynomial.

4.3 Finding Bad Polynomials

In [S2] (problem 6), Smale asks for ways to find polynomials p(z) for which Np(z) has

attracting periodic sinks. It is our belief that such polynomials occur near those whose

Newton flow Np has saddle connections.

More precisely, let p0(z) be a polynomial for which Np0 has saddle connections, and

let F(p0) be the family of polynomials which can be obtained from p0 by a continuous

deformation of the roots which does not break the saddle connections in the corresponding

flow. Then it is our conjecture that there is a pω ∈ F(p0) for which the Newton map Npω
has an attracting periodic orbit. Furthermore, we also conjecture that if Np has a periodic

attractor, then there is a deformation of p to a polynomial pω for which Npω has saddle

connections; this deformation can be made so that each Newton map Npt has a periodic

attractor.
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4.4 A Family of Fourth Degree Newton’s Methods

In [DH] and [CGS], the parameter space for Newton’s method on a family of cubic

polynomials is studied. For certain ranges of parameter values, copies of the Mandelbrot set

appear in the pictures. This behavior is explained in [DH] by the theory of polynomial-like

mappings.

Definition. Let U and U ′ be open sets isomorphic to D with U ′ relatively compact in U .

A map f : U ′ → U is said to be polynomial-like of degree d if it is a proper holomorphic map

whose local degree on U ′ is d.

Let Kf be the set of z ∈ U ′ such that fn(z) is defined and belongs to U ′ for all n ≥ 0.

If f : U ′ → U and g : V ′ → V are two polynomial-like mappings, we say that they are

quasi-conformally equivalent if there is a quasi-conformal homeomorphism

φ : U1 → V1,

where U1 and V1 are neighborhoods of Kf and Kg, satisfying

g ◦ φ = φ ◦ f on f−1(U1).

The Straightening Theorem. ([DH]) Let f be a polynomial-like mapping of degree d

with Kf connected. Then f is quasi-conformally equivalent to a polynomial P of degree d.

Let Mf be a connected region in parameter space for which the corresponding map f

is polynomial-like of degree d with connected Kf . Then, under certain conditions, Mf is a

quasi-conformal image of a cover of the connectedness locus for degree d polynomials. (See

[DH] for the conditions).

When there is a periodic attracting orbit for Newton’s method, it is often true that Np
is polynomial-like on some set U containing the attracting orbit. The figures in this section

are studies of the parameter space of Newton’s method for the family of quartic polynomials

pc(z) = (z2 − 1)(z − c)(z − c).

This family has two free critical points, and thus may have at most two attracting

periodic orbits. The free critical points are either real or complex conjugate; when they are

complex conjugate, so are their orbits. But when they are real, their orbits may have different

behaviors. Denote the free critical points γ1 and γ2. By Theorem 1.2, if there is an attracting

periodic orbit, it must attract at least one of points γi.We follow both critical orbits for a

maximum of m iterations of Npc . We then color the point c the grey tone corresponding to

n1 + n2, where ni is the number of iterations it takes for Nn
pc(γi) to get within ε of a root

of pc (or m if it never does). Thus, the dark regions in the figures correspond to those c
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Figure 4.6: A region in the c-plane for the family Npc , where
pc(z) = (z2 − 1)(z − c)(z − c).

Figure 4.7: A close-up of the “swallow” region in the lower part
of Figure 4.6.

values for which Npc has an attracting periodic orbit; the black regions are those where both

critical points are attracted to a periodic orbit.
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Figure 4.8: A close-up of the “tricorn” region on the head of the
snake in Figure 4.6.

Figure 4.7 and Figure 4.8 show close-ups of Figure 4.6. In both these regions, Npc is

cubic-like near the orbits of the critical points. Not surprisingly, we see regions which look

like the slices of the cubic connectedness locus studied by John Milnor in [M]. Milnor refers to

these regions as a swallows (Figure 4.7) and tricorns (Figure 4.8). In Milnor’s models, these

configurations occur when a disk is mapped over itself by a composition of two quadratic

mappings

Qa(z) = z2 + a and Qb(z) = z2 + b.

The swallow occurs when a and b are both real; the tricorn when b = a. This is precisely

the behavior we have for the maps Npc .

Newton’s method for the polynomial (z2−1)(z2 + .16) occurs at the center of the swallow

in Figure 4.7; a polynomial with the same dynamics occurs in the tricorn in Figure 4.8. See

Figure 2.4 or Figure 4.2 for pictures of this polynomial.
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Appendix: Parameters for the Pictures

Here we give the values used to compute the pictures. The parameter “window” gives

the pair of complex numbers which are the lower left and upper right corners of the picture.

We stop iterating Newton’s method when either the iterate comes within ε of a root, or when

the number of iterations exceeds the value of “max its”. These pictures were all computed

using Citool [BSV], a program developed at Boston University for creating and maintaining

such pictures.

Figure 1.2

title : Newton’s method for a quadratic polynomial

polynomial: z2 − 1

slices : 1001

window : −4− 4i, 4 + 4i

max its : 30

ε : 0.000001

Figure 2.2

title : Newton’s method for the cube roots of 1

polynomial: z3 − 1

slices : 1000

window : −2− 2i, 2 + 2i

max its : 50

ε : 0.00000001

Figure 2.3

title : Degree 3 N with a period 2 attractor

polynomial: (z + 0.635445 + 0.140996i)(z − 0.364555 + 0.140996i)

(z − 0.27089− 0.281992i)

slices : 500

window : −2− 2i, 2 + 2i

max its : 30

ε : .000001
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Figure 2.4

title : Degree 4 N with 2 period 2 attractors

polynomial: (z2 − 1)(z2 + 0.16)

slices : 500

window : −2− 2i, 2 + 2i

max its : 30

ε : .000001

Figure 2.5

title : Sylvester the cat

polynomial: (z3 − i)(z + 2i)

slices : 1000

window : −3− 3i, 3 + 3i

max its : 40

ε : .000001

Figure 2.6

title : Sylvester Squints

polynomial: (z + i)(z + 0.6 + 1.6i)(z + 0.6− 0.45i)(z − 0.8660254− 0.5i)

slices : 1000

window : −3− 3i, 3 + 3i

max its : 40

ε : .000001

Figure 2.7

title : N for a “random” degree 10 polynomial

polynomial: z(z + 1− i)(z + 1 + i)(z + 0.494781 + 1.25887i)(z − .7465 + .0465i)

(z − 1.79749 + 0.507307i)(z − 0.920668− 0.244259i)(z + .3− .2i)
(z − 0.682672− 1.47182i)(z − 0.244259 + 0.0814196i)

slices : 1000

window : −3− 3i, 3 + 3i

max its : 30

ε : .000001
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Figure 2.8

title : N for another “random” degree 10 polynomial

polynomial: (z + 1.5)(z − .27i)(z + .16i)(z − .3)(z − .8− .2i)(z − .7− .3i)
(z − .75 + .5i)(z − .81)(z − .9− .5i)(z − 9 + .25i)

slices : 1000

window : −3− 3i, 3 + 3i

max its : 30

ε : .000001

Figure 2.9

title : N for a polynomial with a double root

polynomial: (z2 + 1)(z − 1)2

slices : 1000

window : −3− 3i, 3 + 3i

max its : 40

ε : .000001

Figure 2.10

title : Newton’s method for the eighth roots of 1

polynomial: z8 − 1

slices : 500

window : −2− 2i, 2 + 2i

max its : 60

ε : .000001

Figure 4.2

title : Degree 4 N with two period 2 attractors

polynomial: (z2 − 1)(z2 + 0.16)

slices : 500

window : −2− 2i, 2 + 2i

max its : 30

ε : .000001

Figure 4.3

title : Newton Flow for Figure 4.2

polynomial: (z2 − 1)(z2 + 0.16)

window : −2− 2i, 2 + 2i
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Figure 4.4

title : N for a degree 8 polynomial

polynomial: (z4 + 4)(z − 1.4535− .6535i)(z − 1.4535 + .0465i)

(z − .7465− .6535i)(z − .7465 + 0.0465i)

slices : 500

window : −3− 3i, 3 + 3i

max its : 30

ε : .000001

Figure 4.5

title : Newton Flow for Figure 4.5

polynomial: (z4 + 4)(z − 1.4535− .6535i)(z − 1.4535 + .0465i)

(z − .7465− .6535i)(z − .7465 + 0.0465i)

window : −3− 3i, 3 + 3i

Figure 4.6

title : A snake with a hat; parameter plane for Npc
pc(z) : (z2 − 1)(z − c)(z − c)
slices : 1000

window : −1.2, 1.2 + 2.8i

max its : 50

ε : .000001

Figure 4.7

title : a swallow in the snake; parameter plane for Npc
pc(z) : (z2 − 1)(z − c)(z − c)
slices : 1000

window : −0.08114 + 0.282i, 0.08114 + 0.493526i

max its : 50

ε : .000001

Figure 4.8

title : the hat of the snake; parameter plane for Npc
pc(z) : (z2 − 1)(z − c)(z − c)
slices : 1000

window : −0.430188 + 2.0295i, 0.420188 + 2.82014i

max its : 50

ε : .000001
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