MAT-544 Schul

First Name:

Last Name:

Stony Brook ID:

Signature:

Write coherent mathematical statements and show your work on all problems. If you use a theorem from the book, you must fully state it. If you give an example/construction then you must prove it is such. Please write clearly.

Rules.

- 1. Start when told to; stop when told to.
- 2. No notes, books, etc,...
- 3. Turn OFF all unauthorized electronic devices (for example, your cell phone).

1 (20 pts)	2 (10pts)	3 (10pts)	4 (10 pts)	5 (15 pts)

Choose 4 out of the 5 questions. Note that they are not all worth the same amount of points.

- 1. (20 points)
 - (a) (5 points) State Egoroff's theorem.
 - (b) (5 points) State Lusin's theorem.

(c) (10 points) Use Egoroff's theorem to derive Lusin's theorem. Note: Upon request, I can give you the answer to (a)+(b) and deduct 10 points from your total.

2. (10 points) Let ν, μ be two positive, finite measures on the measure space $(\mathbb{X}, \mathcal{M})$. Let

$$\mathcal{F} = \{ f \in L^+ : \int_E f d\mu \le \nu(E), \quad \text{for all } E \in \mathcal{M} \}$$

Show that there is a maximal function in \mathcal{F} .

3. (10 points) Let ν, μ be two positive, finite measures on the measure space $(\mathbb{X}, \mathcal{M})$. Suppose that $\nu \ll \mu$. Show that if $g \in L^1(\nu)$ then $g \frac{d\nu}{d\mu} \in L^1(\mu)$ and

$$\int g d\nu = \int g \frac{d\nu}{d\mu} d\mu$$

- 4. (10 points)For $\mathcal{A} \subset 2^{\mathbb{X}}$, define the *monotone class* $\mathcal{C}(\mathcal{A}) \subset 2^{\mathbb{X}}$ as the minimal collection of sets closed under countable increasing unions and countable decreasing intersections.
 - (a) State (do not prove) the monotone class lemma, a lemma relating $\mathcal{C}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A})$ for an algebra \mathcal{A} .
 - (b) Use the lemma from part (a) to show the following: Suppose $(\mathbb{X}, \mathcal{M}, \mu)$ and $(\mathbb{Y}, \mathcal{N}, \nu)$ are finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$, then the function

$$x \to \nu(\{y : (x, y) \in E\})$$

is measurable and

$$\mu \times \nu(E) = \int \nu(\{y : (x, y) \in E\}) d\mu(x)$$

5. (15 points)

(a) (5 points) State the Hahn and Jordan decomposition theorems.

(b) (10 points) Let ν, μ be two positive, finite measures on the measure space $(\mathbb{X}, \mathcal{M})$. Suppose $\nu \ll \mu$. Let $\epsilon > 0$ be given. Use the Hahn or Jordan decomposition theorems to explicitly give a **simple** function $f \in L^+$ such that for any $E \in \mathcal{M}$

$$\left| \int_{E} f d\mu - \nu(E) \right| < \epsilon$$

Note: do not use Lebesgue-Radon-Nikodym