\qquad

Last Name: \qquad

Stony Brook ID: \qquad

Signature:

Write coherent mathematical statements and show your work on all problems. If you use a theorem from the book, you must fully state it. If you give an example/construction then you must prove it is such. Please write clearly.

Rules.

1. Start when told to; stop when told to.
2. No notes, books, etc, \ldots
3. Turn OFF all unauthorized electronic devices (for example, your cell phone).

1 (10pts)	2 (20pts)	3 (10pts)	4 (10pts)
5 (10pts)	6 (10pts)	7 (20pts)	8 (20pts)

Choose 6 out of the 8 questions. Note that they are not all worth the same amount of points. Some questions are hard.

1. (10 points)
(a) What is a simple function?
(b) Let $f: \mathbb{X} \rightarrow[0, \infty)$ be a measurable function. Show by construction that there is a sequence of simple functions $\phi_{n}: \mathbb{X} \rightarrow \mathbb{R}$ such that $\phi_{n} \rightarrow f$ everywhere, and that this limit is uniform on the set $\{x: f(x)<1000\}$.
2. (20 points) Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of Lebesgue-integrable functions. For each of the statements below, prove it or find a counterexample.
(a) (4 points) If $f_{n} \rightarrow f$ almost everywhere, then a subsequence converges to f in L^{3}.
(b) (4 points) If $f_{n} \rightarrow f$ in measure, then $f_{n} \rightarrow f$ in L^{3}.
(c) (4 points) If $f_{n} \rightarrow f$ in L^{3}, then a subsequence converges to f in measure.
(d) (8 points) If $f_{n} \rightarrow f$ in measure, then a subsequence converges to f almost everywhere.
3. (10 points) For an integer j, let

$$
\Delta_{j}=\left\{\left[\frac{i}{2^{j}}, \frac{i+1}{2^{j}}\right): i \in \mathbb{Z}\right\} .
$$

Let

$$
\Delta=\bigcup_{j=0}^{\infty} \Delta_{j}
$$

Fix a finite Borel measure μ on \mathbb{R}, and for an integrable function $f:[0,1) \rightarrow \mathbb{R}$, let

$$
M_{\Delta} f(x)=\sup _{\substack{I \in \Delta \\ I \ni x}} \frac{1}{\mu(I)} \int_{I}|f| d \mu
$$

Show that for any $\lambda>0$,

$$
\mu\left\{x \in[0,1): M_{\Delta} f(x)>\lambda\right\}<\frac{1}{\lambda} \int_{[0,1)}|f| d \mu
$$

4. (10 points) Use the same definitions as the previous question. For $x \in[0,1$), and $n \in \mathbb{N}$, let $I_{n}(x)$ be the unique interval in Δ_{n} such that $I_{n}(x) \ni x$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a locally integrable function. Let

$$
A_{n} f(x)=\frac{1}{\mu\left(I_{n}(x)\right)} \int_{I_{n}(x)} f d \mu
$$

Use the result of the previous question to show that for μ almost every $x \in[0,1)$ we have

$$
\lim _{n \rightarrow \infty} A_{n} f(x)=f(x)
$$

Note: You may use without proof the following fact. For any $\epsilon>0$ there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $\|g-f\|_{1}<\epsilon$ and g is a finite linear combinations of characteristic functions of intervals belonging to Δ, i.e. g can be written in the form $\sum_{j=1}^{k} a_{i} \chi_{I_{j}}$ where $I_{j} \in \Delta$.
5. (10 points) Let $f \in L^{1}(\mathbb{X}, \mathcal{M}, \mu) \cap L^{\infty}(\mathbb{X}, \mathcal{M}, \mu)$.
(a) Show that for any $q \in(1, \infty)$ we have $f \in L^{q}$.
(b) Show that $\|f\|_{\infty}=\lim _{q \rightarrow \infty}\|f\|_{q}$.
6. (10 points) Suppose $1 \leq p<\infty$. Show that if $T: L^{p}(\mathbb{X}, \mathcal{M}, \mu) \rightarrow \mathbb{R}$ is a bounded linear operator, then there is a measure ν on $(\mathbb{X}, \mathcal{M})$ such that $\nu \ll \mu$ and $T(f)=$ $\int f d \nu$ for all $f \in L^{p}$. You may assume that $\mu(\mathbb{X})<\infty$.
7. (20 points)
(a) (5 points) State Egoroff's theorem.
(b) (5 points) State Lusin's theorem.
(c) (10 points) Use Egoroff's theorem to derive Lusin's theorem. Note: Upon request, I can give you the answer to (a) $+(\mathrm{b})$ and deduct 10 points from your total.
8. (20 points) Suppose that $F: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that for any rational $q \in \mathbb{Q}$ and any $x \in \mathbb{R}$ we have $F(x+q)=F(x)$.
Show that if F is measurable then there exists $c \in \mathbb{R}$ such that $F(x)=c$ almost everywhere with respect to Lebesgue measure.

