Homework 3. Due Nov. 7 Math 254a. Topics in Real Analysis, Fall 2007

Note: For the questions below, it may be useful to use Jones' theorem about Lipschitz and BiLipschitz functions for Lipschitz functions

$$f: [0,1]^k \to \mathbb{R}^n.$$

(you may use it with $1 \leq k$.)

- 1. Let $f : [0,1]^k \to \mathbb{R}^n$ be Lipschitz. Let $E = f([0,1]^k)$. Show that for $H^k a.e. \ x \in E$ we have f'(x) has rank k.
- 2. Let E, f be as above. Show that for $H^k a.e. x \in E$ we have

$$\theta_*^k(E, x) > 0.$$

3. $\gamma : [0,1]^k \to \mathbb{R}^n$ is called a *k*-Ahlfors-David-regular map with constant C iff:

 γ is C Lipschitz and $H^k(\gamma^{-1}\mathrm{ball}(x,r)) \leq Cr^k$

Show that there is an $\alpha > 0$ such that if γ is as above, then for any cube $Q \subset [0, 1]$ there is a k-plane P in \mathbb{R}^n (not necessarily going through the origin) such that $H^k(\pi_P \circ \gamma(Q)) \ge \alpha H^k(Q)$. (π_P here is the orthogonal projection of \mathbb{R}^n onto P).

Hint: use a normal family argument (like we did in the proof of Jones' theorem about Lipschitz and BiLipschitz functions) and then use question (1).