2-14. Let M be a topological manifold, and let \mathcal{U} be a cover of M by precompact open sets. Show that \mathcal{U} is locally finite if and only if each set in \mathcal{U} intersects only finitely many other sets in \mathcal{U} . Give counterexamples to show that the conclusion is false if either precompactness or openness is omitted from the hypotheses.

2-16. Suppose M is a topological space with the property that for every open cover \mathcal{X} of M, there exists a partition of unity subordinate to \mathcal{X} . Show that M is paracompact.

2-18. Let M be a smooth manifold, let $B \subset M$ be a closed subset, and let $\delta: M \to \mathbb{R}$ be a positive continuous function.

(a) Using a partition of unity, show that there is a smooth function $\delta : M \to \mathbb{R}$ such that $0 < \delta(x) < \delta(x)$ for all $x \in M$.

(b) Show that there is a continuous function $\psi : M \to \mathbb{R}$ that is smooth and positive on $M \setminus B$, zero on B, and satisfies $\psi(x) < \delta(x)$ everywhere. [Hint: Consider 1/(1+f), where $f : M \setminus B \to \mathbb{R}$ is a positive exhaustive function.]

3-1. Suppose M and N are smooth manifolds with M connected, and $F : M \to N$ is a smooth map such that $F_* : T_p M \to T_{F(p)} N$ is the zero map for each $p \in M$. Show that F is a constant map.

3-3. If a nonempty smooth *n*-manifold is diffeomorphic to an *m*-manifold, prove that n = m.

3-5. Consider \mathbb{S}^3 as a subset of \mathbb{C}^2 under the usual identification of \mathbb{C}^2 with \mathbb{R}^4 . For each $z = (z^1, z^2) \in \mathbb{S}^3$, define a curve $\gamma_z : \mathbb{R} \to \mathbb{S}^3$ by $\gamma_z(t) = (e^{it}z^1, e^{it}z^2)$.

(a) Compute the coordinate representation of $\gamma_z(t)$ in stereographic coordinates, and use this to show that γ_z is a smooth curve

(b) Compute $\gamma'_{z}(t)$ in stereographic coordinates, and show that it is never zero.

3-8. Let M be a smooth manifolds and $p \in M$. Let \mathcal{C}_p denote the set of smooth curves $\gamma : J \to M$ such that $0 \in J$ and $\gamma(0) = p$. Define an equivalence relation on \mathcal{C}_p by saying that $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for every smooth real-valued function f defined in a neighborhood of p, and let \mathcal{V}_p denote the set of equivalence classes. Show that the map $\Phi : \mathcal{V}_p \to T_p M$ defined by $\Phi[\gamma] = \gamma'(0)$ is well-defined and yields a one-to-one correspondence between \mathcal{V}_p and $T_p M$.