2-14. Let M be a topological manifold, and let \mathcal{U} be a cover of M by precompact open sets. Show that \mathcal{U} is locally finite if and only if each set in \mathcal{U} intersects only finitely many other sets in \mathcal{U}. Give counterexamples to show that the conclusion is false if either precompactness or openness is omitted from the hypotheses.

2-16. Suppose M is a topological space with the property that for every open cover \mathcal{X} of M, there exists a partition of unity subordinate to \mathcal{X}. Show that M is paracompact.

2-18. Let M be a smooth manifold, let $B \subset M$ be a closed subset, and let $\delta: M \rightarrow \mathbb{R}$ be a positive continuous function.
(a) Using a partition of unity, show that there is a smooth function $\tilde{\delta}: M \rightarrow \mathbb{R}$ such that $0<\tilde{\delta}(x)<\delta(x)$ for all $x \in M$.
(b) Show that there is a continuous function $\psi: M \rightarrow \mathbb{R}$ that is smooth and positive on $M \backslash B$, zero on B, and satisfies $\psi(x)<\delta(x)$ everywhere. [Hint: Consider $1 /(1+f)$, where $f: M \backslash B \rightarrow \mathbb{R}$ is a positive exhaustive function.]

3-1. Suppose M and N are smooth manifolds with M connected, and F : $M \rightarrow N$ is a smooth map such that $F_{*}: T_{p} M \rightarrow T_{F(p)} N$ is the zero map for each $p \in M$. Show that F is a constant map.
$3-3$. If a nonempty smooth n-manifold is diffeomorphic to an m-manifold, prove that $n=m$.

3-5. Consider \mathbb{S}^{3} as a subset of \mathbb{C}^{2} under the usual identification of \mathbb{C}^{2} with \mathbb{R}^{4}. For each $z=\left(z^{1}, z^{2}\right) \in \mathbb{S}^{3}$, define a curve $\gamma_{z}: \mathbb{R} \rightarrow \mathbb{S}^{3}$ by $\gamma_{z}(t)=\left(e^{i t} z^{1}, e^{i t} z^{2}\right)$.
(a) Compute the coordinate representation of $\gamma_{z}(t)$ in stereographic coordinates, and use this to show that γ_{z} is a smooth curve
(b) Compute $\gamma_{z}^{\prime}(t)$ in stereographic coordinates, and show that it is never zero.

3-8. Let M be a smooth manifolds and $p \in M$. Let \mathcal{C}_{p} denote the set of smooth curves $\gamma: J \rightarrow M$ such that $0 \in J$ and $\gamma(0)=p$. Define an equivalence relation on \mathcal{C}_{p} by saying that $\gamma_{1} \sim \gamma_{2}$ if $\left(f \circ \gamma_{1}\right)^{\prime}(0)=\left(f \circ \gamma_{2}\right)^{\prime}(0)$ for every smooth real-valued function f defined in a neighborhood of p, and let \mathcal{V}_{p} denote the set of equivalence classes. Show that the map $\Phi: \mathcal{V}_{p} \rightarrow T_{p} M$ defined by $\Phi[\gamma]=\gamma^{\prime}(0)$ is well-defined and yields a one-to-one correspondence between \mathcal{V}_{p} and $T_{p} M$.

