MAT 320. HW due Oct 31, 2018

Do problems 18.12, 20.4, 20.8, 20.18 from the textbook.
Problem 1. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bijective function such that the composition $f \circ f$ is continuous everywhere, does it necessarily follow that f is continuous everywhere?
Problem 2. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by setting

$$
f(x)= \begin{cases}x^{2} & \text { if } x^{2} \in \mathbb{Q} \\ 2 & \text { if } x^{2} \notin \mathbb{Q}\end{cases}
$$

Determine the set of all $a \in \mathbb{R}$ such that the limit $\lim _{x \rightarrow a} f(x)$ exists.
Problem 3. Prove that there exists a unique continuous function

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

such that $f(1)=2$, and such that

$$
f(x) \cdot f(y)=f(x+y)
$$

for any $x, y \in \mathbb{R}$.
The following problem has been removed. Remember to submit Problem 3 from HW 7 instead, which has been postponed until now

Problem 4. Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \cdot f(y)=f(x+y)$ for any $x, y \in \mathbb{R}$, but such that f is not everywhere emtinturs?

