MAT 320. HW due Oct 24, 2018

Do problems 17.12, 17.14, 18.8, 18.9 from the textbook.

Problem 1. Let $f(x) = \max(x, |x|-1)$ and $g(x) = \operatorname{sgn}(|x|-1)$, where sgn denotes the sign function: $\operatorname{sgn}(x) = 1$ for any x > 0, $\operatorname{sgn}(x) = -1$ for any x < 0, and $\operatorname{sgn}(0) = 0$. For each of the functions $f, g, f \circ g, g \circ f$ determine the set of all $x \in \mathbb{R}$ at which it is continuous.

Problem 2. Suppose f is a continuous function $[0,1] \rightarrow [0,1]$ such that f(0) = 0 and f(1) = 1. Suppose that for any $x \in [0,1]$, one has $f \circ f \circ f(x) = x$. Prove that for any $x \in [0,1]$, f(x) = x.

Problem 3. For this problem, assume all the properties of \mathbb{R}^2 , and of the area of sets in \mathbb{R}^2 , that you want — in particular assume that all sets you encounter below have a well-defined area (MAT 324 is largely devoted to understanding what happens more generally).

Let $S \subset \mathbb{R}^2$ be a subset of the plane contained in the unit disk around the origin. Show that there exists a line through the origin that divides S into two sets of equal area.

Problem 4. Let S be the set of all real numbers 0 < x < 1 such that the decimal expansion of x consists only of digits 5 and 7. Does there exist an unbounded continuous function on S?