MAT 320. HW due Oct 24, 2018

Do problems 17.12, 17.14, 18.8, 18.9 from the textbook.
Problem 1. Let $f(x)=\max (x,|x|-1)$ and $g(x)=\operatorname{sgn}(|x|-1)$, where sgn denotes the sign function: $\operatorname{sgn}(x)=1$ for any $x>0, \operatorname{sgn}(x)=-1$ for any $x<0$, and $\operatorname{sgn}(0)=0$. For each of the functions $f, g, f \circ g, g \circ f$ determine the set of all $x \in \mathbb{R}$ at which it is continuous.

Problem 2. Suppose f is a continuous function $[0,1] \rightarrow[0,1]$ such that $f(0)=0$ and $f(1)=1$. Suppose that for any $x \in[0,1]$, one has $f \circ f \circ f(x)=x$. Prove that for any $x \in[0,1], f(x)=x$.

Problem 3. For this problem, assume all the properties of \mathbb{R}^{2}, and of the area of sets in \mathbb{R}^{2}, that you want - in particular assume that all sets you encounter below have a well-defined area (MAT 324 is largely devoted to understanding what happens more generally).

Let $S \subset \mathbb{R}^{2}$ be a subset of the plane contained in the unit disk around the origin. Show that there exists a line through the origin that divides S into two sets of equal area.

Problem 4. Let S be the set of all real numbers $0<x<1$ such that the decimal expansion of x consists only of digits 5 and 7 . Does there exist an unbounded continuous function on S ?

