## MAT 320. HW 10, now due Nov 15, 2018

Do problems 21.5, 21.6, 21.9, 21.10, 21.11 from the textbook.
Problem 1. Let $S^{1}$ be the unit circle $S^{1}:=\left\{x, y: x^{2}+y^{2}=1\right\} \subset$ $\mathbb{R}^{2}$. Consider the map $f: \mathbb{R}^{2} \backslash \mathbf{0} \rightarrow S^{1}$, obtained by projecting from the origin $\mathbf{0} \in \mathbb{R}^{2}$. Write out $f$ in coordinates and prove that $f$ is continuous.

Problem 2. Think of $\mathbb{R} \subset \mathbb{R}^{2}$ as the $x$-axis. Let then $f$ be the projection from the point $(0,1) \in \mathbb{R}^{2}$, which maps $S^{1} \backslash\{(0,1)\}$ onto $\mathbb{R}$. Prove that $f$ is continuous, and let then $\tilde{f}: S^{1} \rightarrow \mathbb{R} \cup\{\infty\}$ be defined to be the extension of $f$ obtained by setting $\tilde{f}(0,1):=\infty$. Describe the notion of topology on $\mathbb{R} \cup\{\infty\}$ that makes $\tilde{f}$ and $\tilde{f}^{-1}$ continuous maps. Does the map $x \mapsto 1 / x$ then extend to a continuous map $g: \mathbb{R} \cup\{\infty\} \rightarrow \mathbb{R} \cup\{\infty\}$ ?

