MAT 320. HW 10, now due <u>Nov 15</u>, 2018

Do problems 21.5, 21.6, 21.9, 21.10, 21.11 from the textbook.

Problem 1. Let S^1 be the unit circle $S^1 := \{x, y : x^2 + y^2 = 1\} \subset \mathbb{R}^2$. Consider the map $f : \mathbb{R}^2 \setminus \mathbf{0} \to S^1$, obtained by projecting from the origin $\mathbf{0} \in \mathbb{R}^2$. Write out f in coordinates and prove that f is continuous.

Problem 2. Think of $\mathbb{R} \subset \mathbb{R}^2$ as the *x*-axis. Let then *f* be the projection from the point $(0,1) \in \mathbb{R}^2$, which maps $S^1 \setminus \{(0,1)\}$ onto \mathbb{R} . Prove that *f* is continuous, and let then $\tilde{f} : S^1 \to \mathbb{R} \cup \{\infty\}$ be defined to be the extension of *f* obtained by setting $\tilde{f}(0,1) := \infty$. Describe the notion of topology on $\mathbb{R} \cup \{\infty\}$ that makes \tilde{f} and \tilde{f}^{-1} continuous maps. Does the map $x \mapsto 1/x$ then extend to a continuous map $g : \mathbb{R} \cup \{\infty\} \to \mathbb{R} \cup \{\infty\}$?