Math 312/ AMS 351 (Fall '17) Midterm 1

September 26, 2017

1. Prove that if x is not equal to 1 and n is any positive integer then

$$
1+x+x^{2}+\cdots+x^{n}=\frac{x^{n+1}-1}{x-1}
$$

2. a) Prove that no number of the form $4 k+3$ can be written as a sum of two squares.
b) Show that a number n is divisible by 9 iff the sum of its digits is divisible by 9 . Give an example of this criterion for a number with 4 digits.
3. Show that there exist infinitely many primes of the form $3 k+2$.
4. Solve the following equations
i) $3 x+2 \equiv x+4 \bmod 9$
ii) $6 x+2 \equiv 4 \bmod 9$
iii) $x \equiv 2 \bmod 5$ and $x \equiv 3 \bmod 7$
5. i) Compute $7^{66} \bmod 120$.
ii) Prove that for any a and $n>2$, the last two digits of a^{n} can not be 30 .
