Math 360 (Spring '16)

Homework 9

due on May 5

- 1. Let ℓ be a line, and $P \notin \ell$ a point.
 - i) What is the locus of points at fixed distance x from P?
 - ii) What is the locus of points at fixed distance y from ℓ ?
 - iii) Find a point Q which is at distance x from P and distance y from ℓ .
 - iv) How many points Q are at distance x from P and distance y from ℓ ? (N.B. here you should get different answers depending on the _____ between ℓ and P)
- 2. Given a segment AB and a point M on this segment:
 - i) Construct a point P such that $\angle APB = 60^{\circ}$. What is the locus of points P with this property?
 - ii) Construct a point P such that $\angle APB=60^\circ$ and PM is the bisector of angle $\angle P$.
- 3. (This exercise tests the use of sine/cosine laws)
 - 1) Compute $\sin 60^{\circ}$ and $\cos 60^{\circ}$ (Hint: use an equilateral triangle).
 - 2) Given a triangle ABC such that $\angle BAC = 60^{\circ}$, AB = 2, AC = 5, compute BC and then the other two angles (i.e. sin or cos of those angles).
 - 3) Decide if the angles at B and C are acute or obtuse. (Before you do any computation, which angle could be obtuse justify)
 - 4) Compute the distance from A to the line BC.
- 4. You are given segments of length a, b, c, \ldots and if needed a segment of length 1. Construct the following quantities and indicate if you need to use the unit segment.
 - i) $a\sqrt{2}$

- ii) $\sqrt{2a}$
- iii) $\frac{a^2c}{b^2}$
- iv) $\frac{1}{a} + \frac{1}{b}$
- v) $\sqrt{a^2 + bc}$
- 5. Let $T(\vec{x}) = A\vec{x} + \vec{b}$ be an affine transformation.
 - i) Give an example of affine transformation such that

$$T\left(\begin{array}{c}2\\3\end{array}\right) = \left(\begin{array}{c}-1\\2\end{array}\right)$$

- ii) List all affine transformations that preserve the origin and the y-axis.
- iii) Prove that an affine transformation that preserves both the x-axis and y-axis, preserves also the origin. List all such transformations.
- iv) Find an affine transformation T that transforms the triangle with vertices $A = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $B = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, $C = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ into the standard triangle (vertices $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$).
- 6. Prove using affine geometry that the medians in a triangle meet in a single point.