Math 360 (Spring '16)

Homework 8

due on Apr 26

1. Determine which of the following transformations $t: \mathbb{R}^2 \to \mathbb{R}^2$ are Euclidean transformations. How about affine transformations?

a)
$$t(x) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} x + \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

b)
$$t(x) = \begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix} x + \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

c)
$$t(x) = \begin{pmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{4}{\sqrt{5}} \end{pmatrix} x + \begin{pmatrix} 2\\ 5 \end{pmatrix}$$

- 2. Write down an example (if one exists) of each type of transformation $t: \mathbb{R}^2 \to \mathbb{R}^2$ described below. In each case, justify your answer.
 - (a) An affine transformation t which is not a Euclidean transformation.
 - (b) A Euclidean transformation t which is not an affine transformation.
 - (c) A transformation t which is both Euclidean and affine.
 - (d) A transformation t which is one-to-one, but is neither Euclidean nor affine.
- 3. Which of the following are affine properties (i.e. preserved by affine transformations)?
 - distance
 - collinearity
 - circularity
 - magnitude of angle

- midpoint of line segment
- 4. The affine transformation $t: \mathbb{R}^2 \to \mathbb{R}^2$ is given by

$$t(x) = \begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix} x + \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

Determine the image under t of each of the following geometric objects:

- a) 2y = 3x 1
- b) $x^2 + y^2 = 1$.
- 5. Determine the affine transformation which maps the points (1, -1), (5, -4) and (-2, 1) to the points (1, 1), (4, 0) and (0, 2) respectively.