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Introduction

0.1. In the last two decades vertex algebras have been an important tool in such
diverse subjects as representations of infinite-dimensional algebras and the theory
of finite groups [15, 19].

Roughly speaking, a vertex algebra is a space V such that to each element of V
there corresponds a formal distribution, i.e. an element of EndV [[z±1]]. (Note that
any algebraic operation performed on the space of formal distribution will have to
involve more than one variable, as the distributions are power series in both z and
z−1.) Two distributions a(z) and b(w) must be local, that is, commute outside the
diagonal of the zw-plane.

0.2. The first definition of vertex algebras was given in [6] and is rather involved.
With time a need for an algebraic formalism for vertex algebras became clear. Since
local formal distributions are in some sense meromorphic, it is reasonable to look
at the “singular” part first. Such an approach was emphasized in [26, 27] and
especially [19], where this theory was fully developed (see also [4, 23] for geometric
counterparts).

This setting is quite general; for an algebra A, consider the following operation
on formal distributions over A:

(0.1) a(z)©n b(z) = Resw=0 a(w)b(z)(w − z)n, a(z), b(z) ∈ A[[z±1]], n ∈ Z≥0.

Two formal distributions are local if a finite number of their products (0.1) is
nonzero. The formalization of this definition leads to the concept of a conformal
algebra (Definition 1.1). Then a vertex algebra is defined as having two related
structures: that of a Lie conformal algebra and a left symmetric differentiable
algebra [2].

0.3. Conformal algebras also have an intriguing connection to Hamiltonian for-
malism in the theory of nonlinear evolutionary equations [1, 34]. In fact the first
appearance in the literature of conformal-like structures predates the discovery of
vertex algebras and comes from the calculus of variations [17]. However, this subject
is outside the scope of this survey.

0.4. This survey is dedicated to the study of conformal algebras and their rep-
resentations. Other expository papers on the subject appeared in the past, in
particularly, [20] and [35]; however, there have been new developments in the field
since their publication.
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We begin by defining conformal algebras and discussing their general properties
in Chapter 1. It also contains several basic examples. Chapter 2 develops the
theory of representations of conformal algebras. The bulk of this survey, Chapter 3,
is dedicated to the very important conformal algebras gcn and Cendn and their
subalgebras (roughly, they are the analogs of matrix algebras). We conclude with
conjectures and open questions in Chapter 4.

Most of the results here appeared elsewhere; however, several remarks are new.
Throughout this survey the base field is C.

1. Basic Definitions and Examples

1.1. We begin with the formal definition of a conformal algebra.

Definition 1.1. [19] A conformal algebra C is a C[∂]-module endowed with bilinear
operations ©n : C ⊗ C → C, n ∈ Z≥0, such that for any a, b ∈ C

(1) (locality axiom) a©n b = 0 for n > N(a, b)
(N(a, b) is called the order of locality of a and b);

(2) (Leibniz rule) ∂(a©n b) = (∂a)©n b+ a©n (∂b);
(3) (∂a)©n b = −na n−1 b.

A more succinct way to present operations in a conformal algebra C is via the
so-called λ-product. Let λ be a formal variable. Define the map C ⊗C → C[λ]⊗C
as

(1.1) aλb =
∑

n

λn

n!
a©n b, a, b ∈ C, n ∈ Z≥0.

We then arrive at an alternative definition of a conformal algebra: this is a C[∂]-
module with a bilinear λ-product satisfying analogs of axioms (2) and (3) (a quick
exercise is to deduce them explicitly!). Clearly locality is automatic here; after all,
the λ-product produces a polynomial in λ. The λ-product works extremely well in
calculations; we will see some evidence of this below.

1.2. A set of mutually local formal distributions closed with respect to product
©n and ∂z is a conformal algebra. Thus conformal algebras provide an algebraic
formalism for algebras of local formal distributions. Conversely, every conformal
algebra can be made into an algebra of formal distributions. This is the procedure:

Let C be a conformal algebra. For each integer n, consider the linear space
Â(n) isomorphic to C. The element corresponding to a ∈ C is denoted â(n). Let
Â =

⊕
n∈Z Â(n) and let E be the subspace of Â spanned by the elements of the

form (∂a)(n) + na(n− 1) for all a ∈ C, n ∈ Z. The quotient space Coeff C = Â/E
is the coefficient algebra of C. The image â(n) in Coeff C is denoted a(n).

It remains to introduce the operation on Coeff C. The following formula holds
for any two formal distributions a and b:

a(m)b(n) =
∑
j≥0

(
m

j

)
(a j b)(m+ n− j).

Now we take it as the definition of the product in Coeff C. It follows that C is
isomorphic to an algebra of formal distributions over Coeff C (and ∂ acts properly
because we factored out E).
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Remark 1.2. The above construction is taken from [31]. [19] follows a somewhat
different approach by introducing a conformal structure on Â. (This is more similar
to the original construction for vertex algebras in [6].)

Coeff C is universal among all algebras of possible coefficients. Namely, let B
be an algebra such that there exists a homomorphism C → B[[z, z−1]]. Then there
exists a unique homomorphism φ : Coeff C → B such that the diagram

Coeff C[[z, z−1]]
φ−−→ B[[z, z−1]]

↖ ↗
C

commutes.

1.3. Now we can define Lie and associative conformal algebras.
Let X be a variety of algebras (Lie, associative, commutative, etc). Then we say

that C is X conformal if Coeff C is X (or more rigorously lies in X ).
This definition is in a sense unsatisfactory: it refers to another object and a non-

conformal one at that. An improvement would be to define a variety of conformal
algebras directly. So, assume that X is defined by identities {fα} (e.g. the Jacobi
identity and anti-commutativity for Lie algebras). Then one can produce identities
{gα} such that a conformal algebra C satisfies them if and only if C is X conformal.
The algorithm for the construction of such identities gα can be found in [19]; a more
detailed discussion appears in [24].

Conformal identities look much better in their λ-form. To provide a few exam-
ples, the conformal law of associativity is (for any a, b, c ∈ C)

(1.2) aλ(bµc) = (aλb)λ+µc,

and anti-commutativity and the Jacobi identity are, respectively,

[aλb] = −[b−∂−λa],(1.3)

[aλ[bµc]] = [[aλb]λ+µc] + [bµ[aλc]](1.4)

(we denote the λ-product in a Lie conformal algebra as [ λ ] to emphasize its
relation to the ordinary Lie bracket. That is, for a Lie conformal algebra C we have
[ λ ] : C ⊗ C → C[λ]).

Remark 1.3. An associative conformal algebra can always be turned into a Lie
conformal one. The λ-bracket is defined as

[aλb] = aλb− b−λ−∂a.

This allows us to abuse the language sometimes and speak of Lie subalgebras of
an associative conformal algebra C without mentioning that we first turn C into
a Lie conformal algebra as above. The same goes for embeddings of Lie conformal
algebras into associative ones etc.

At this point a reasonable question would be, If we have something like “con-
formal varieties”, can we also get free conformal algebras? In such generality, the
answer is negative. Indeed, a free object must map onto any other, and for confor-
mal algebras this means that the orders of locality for generators in a free conformal
algebra would be unbounded. However, if we restrict the orders of locality for gen-
erators beforehand, we can construct a free conformal algebra. Namely, let S be
a set of letters with a given function N : S × S → Z≥0. Consider the category of
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X conformal algebras generated by S such that for any a, b ∈ S and n > N(a, b),
a©n b=0. This category does possess the universal object called the free conformal
algebra corresponding to the function N . For details, see [31] or [5].

The above discussion shows that a conformal algebra can be described as uni-
versal in some category only if all objects in this category satisfy given locality
conditions. With this in mind, one can ask if there exist universal enveloping alge-
bras for Lie conformal algebras. This turns out to be true for some algebras (e.g.
finite) but in general there exist Lie conformal algebras that can not be embedded
into associative conformal algebras (in the sense of Remark 1.3), see [32].

1.4. The paragraphs above dealt with “universal algebra”; we continue with the
definitions from the structure theory.

A subalgebra of a conformal algebra C is a C[∂]-submodule of C closed with
respect to all the operations ©n . An ideal of C is a C[∂]-submodule I such that for
all n, C©n I ⊂ C and I©n C ⊂ C.

A conformal algebra C is simple if its only ideals are C and 0.
A conformal algebra C is nilpotent of order d if for any n1, n2, . . . , nd−1 ∈ Z≥0,

C n1 C . . . nd−1 C = 0. (There is an abuse of notation going on: the product of d
elements of C is not defined unless we say how the brackets are inserted. Here we
mean that the product is 0 for any insertion of brackets.)

An associative conformal algebra C is semisimple if it has no nonzero nilpotent
ideals.

The derived conformal algebra of a Lie conformal algebra C is C ′ =
∑

n C©n C.
As usual we set C(1) = C ′, C(m+1) = (C(m))′, m ≥ 1, and say that C is solvable if
C(m) = 0 for some m. A Lie conformal algebra is semisimple if it has no nonzero
solvable ideals.

One can go on and define, e.g., prime conformal algebras, various conformal
radicals, and so on, but we do not need them in this survey.

1.5. Now we turn to examples of conformal algebras.
The first example shows that every “ordinary” algebra can be made conformal.

Example 1.4. Let B be an algebra. Consider the affinization B[t±1] of B and the
collection F ⊂ B[t±1][[z, z−1]] of formal distributions of the form

(1.5) b̃ =
∑
m∈Z

btmz−m−1, b ∈ B.

We claim that the module CurB = C[∂] ⊗ F is a conformal algebra. For this we
have only to show that all elements of CurB are pairwise mutually local.

It is easy to see that for any a, b ∈ B,

ã©0 b̃ = ãb, ã©n b̃ = 0, n > 0

(where the products ©n are understood in the sense of (0.1)), and as for the rest
of the elements of CurB, their mutual locality follows from axioms (2) and (3).

CurB is called the current algebra over B.

Remark 1.5. It was easy to check mutual locality for all elements of CurB; however,
this might not be so for an arbitrary collection of formal distributions. Fortunately,
there is a way out for Lie and associative algebras.
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Lemma 1.6 (Dong’s Lemma). Let a, b, and c be pairwise mutually local formal
distributions over a Lie or associative algebra. Then for all n ∈ Z≥0 the formal
distributions a©n b and c are mutually local.

In particular, Dong’s lemma implies that for Lie and associative conformal alge-
bras we have only to check that the generators are local.

For associative algebras, there exists a generalization of current algebras:

Example 1.7. Let B be an associative algebra with a locally nilpotent deriva-
tion δ. Consider its (localized) Ore extension B[t±1; δ] and the collection F ⊂
B[t±1; δ][[z, z−1]] of formal distributions of the type (1.5). For a, b ∈ B, we have

ã©n b̃ = (−1)nãδn(b)

(or ãλb̃ = ãe−λδb in the λ-notation).
The conformal algebra Diff B = C[∂] ⊗ F is called the differential algebra over

B.

In the Lie case, the smallest non-current conformal algebra is the Virasoro con-
formal algebra:

Example 1.8. Consider the Lie algebra Vect C× of regular vector fields on C×. It
is well known that the fields Ln = −tn+1∂t, n ∈ Z, form a basis of Vect C×. The
formal distribution L(z) =

∑
n Lnz

−n−2 is local with itself:

[LλL] = (∂ + 2λ)L.

The conformal algebra Vir = C[∂]⊗ L is called the Virasoro conformal algebra.

Remark 1.9. Vect C× is the algebra of infinitesimal conformal transformations of
C×. This explains the choice of the term “conformal” since Vir is the smallest
non-trivial (i.e. non-current) conformal algebra.

Of course, the “ordinary” Virasoro algebra is not Vect C× but its central exten-
sion. However, one can also construct the central extension V̂ir of Vir such that
Coeff V̂ir is the Virasoro algebra:

Example 1.10. As a vector space V̂ir = Vir⊕Cc (here ∂c = 0) and the λ-brackets
are

[LλL] = (∂ + 2λ)L+
λ3

12
c, [Lλc] = 0, [cλc] = 0.

In the same vein, for a simple finite-dimensional Lie algebra g, one can construct
the central extension Ĉur g of Cur g such that Coeff Ĉur g = ĝ. Namely, Ĉur g is
generated by elements g̃, g ∈ g, and c (again, ∂c = 0) such that

[g̃λh̃] = [̃g, h] + λ(g|h)c, [g̃λc] = 0, [cλc] = 0.

1.6. For brevity we say that a conformal algebra is finite if it is finite as a C[∂]-
module.

A current algebra CurB is simple (respectively, finite) if and only if B is simple
(respectively, finite). Thus, we already know a number of (admittedly not very
interesting) examples of finite simple conformal algebras. Are there others?

In the Lie case, the Virasoro conformal algebra is also simple and finite but this
is it:
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Theorem 1.11. (1) [11] Let C be a finite simple Lie conformal algebra. Then C is
isomorphic to either Vir or a current algebra Cur g over a simple finite-dimensional
Lie algebra g.

(2) [20] Let C be a finite simple associative conformal algebra. Then C is iso-
morphic to a current algebra CurMatn(C).

The first part of Theorem 1.11 is proved by the careful study of the Lie algebra of
non-negative coefficients of C. When completed with respect to its natural topology,
this algebra becomes linearly compact and then, after some additional work, one
applies the Cartan–Guillemin theorem to obtain the complete classification.

The second part follows from the first via standard algebraic techniques.

Remark 1.12. As we have just seen, in the conformal setting the (centerless) Vira-
soro algebra and the Laurent extensions of finite-dimensional simple Lie algebras
appear as coefficient algebras of finite simple Lie conformal algebras. In the non-
conformal universe, however, these belong to two very distinct worlds of Cartan
and affine Kac–Moody algebras.

We can extend Theorem 1.11 to the semisimple case but it is not as straightfor-
ward as one may think:

Example 1.13. For a finite-dimensional Lie algebra g, the C[∂]-module Vir⊕Cur g
carries the following conformal structure:

[LλL] = (∂ + 2λ)L, [g̃λh̃] = [̃g, h], [Lλg̃] = (∂ + λ)g̃.

So, we obtain the semidirect product of Vir and Cur g. When g is semisimple, this
semidirect product is semisimple too.

This, however, is the only surprise in the classification of finite semisimple Lie
conformal algebras:

Theorem 1.14. (1)[11] Let C be a finite semisimple conformal Lie algebra. Then
C is isomorphic to a direct sum of copies of finite simple Lie conformal algebras
and semidirect products of Vir and Cur g for semisimple finite-dimensional g’s.

(2)[20] A finite semisimple associative conformal algebra is isomorphic to a direct
sum of copies of simple associative conformal algebras.

The second part of this theorem seems to be a weak version of the Artin–
Wedderburn theorem: in the end, all we get is matrices. However, from the
representation-theoretic point of view, current algebras over matrices and, in gen-
eral, finite conformal algebras are not the right analogs of ordinary matrices. We
discuss this in the next chapter.

2. Representation Theory of Conformal Algebras

Defining a module M over a conformal algebra C is easy and we now have a
choice of two approaches: either modify Definition 1.1 by considering the products
C ⊗M → M or define a module of formal distributions over an algebra of formal
distributions imitating (0.1). However, it is even better to take a more general
approach and start with the definition of a conformal linear map. In particular,
this will help us to construct certain representations later on.
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2.1. Let M and N be two C[∂]-modules. A conformal linear map from M to N is
a C-linear map φ : M → C[λ]⊗N , denoted φλ : M → N , such that ∂φλ − φλ∂ =
−λφλ. As above, we can define the operators φ©n via φλm =

∑
n(λn/n!)φ©n m.

We can “differentiate” conformal linear maps by putting (∂φ)λ = −λφλ.
The space of all conformal linear maps from M to N is denoted Chom(M,N).

It carries a natural structure of a C[∂]-module. When M = N , we can also define
the products ψ©n φ of conformal linear maps by applying the conformal law of
associativity (1.2). However, in general this does not make Chom(M,M) into a
conformal algebra as the locality condition fails. For instance, let M be of infinite
rank and φ ∈ Chom(M,M) be such that for any n there exists un ∈ M whose
order of locality with φ is n. Put vn = φ©n un. Let ψ ∈ Chom(M,M) be such that
ψ©0 vn 6= 0 for all n. Then for any n, (ψ©n φ)©n un 6= 0 and thus ψ and φ are not
local.

On the other hand, if M is of finite rank, any two elements of Chom(M,M)
are local with each other. In this case we denote the associative conformal algebra
Chom(M,M) as CendM .

CendM with a Lie conformal bracket (see Remark 1.3) is denoted gcM .
To simplify notations, we also denote Cend C[∂]n and gc C[∂]n as Cendn and

gcn, respectively.

2.2. Now we will define a module over a conformal algebra.

Definition 2.1. A module M over a Lie or associative conformal algebra C is a
C[∂]-module endowed with an operation C ⊗M → C[λ] ⊗M such that for any
a, b ∈ C and v ∈M ,

(1) (∂a)λv = −λaλv, aλ∂v = (∂ + λ)(aλv);
(2) aλ(bµv) = [aλb]λ+µv + bµ(aλv) if C is Lie;

aλ(bµv) = (aλb)λ+µv if C is associative.

Simply put, M is a C-module if there exists a map C → Chom(M,M) of con-
formal algebras that satisfies a version of the Jacobi identity or associativity.

As usual we can define a submodule, an irreducible module (contains no non-
trivial submodules), an indecomposable module (does not split into a direct sum of
non-trivial submodules), etc. We call a module finite if it is finite over C[∂].

Remark 2.2. If C is a Lie conformal algebra and M and N are modules over C,
Chom(M,N) also carries a natural structure of a C-module. Namely, we set

(aλφ)µm = aλ(φµ−λm)− φµ−λ(aλm), a ∈ C, φ ∈ Chom(M,N),m ∈M.

Then we can define the contragradient C-module U∗ = Chom(M,C), where C
stands for the trivial C-module (with the trivial action of ∂).

For a finite M , we also can define M ⊗N = Chom(M∗, N).

As in Chapter 1, one can show that a module over a conformal algebra C can
be always viewed as a module of formal distributions over a “coefficient module”
which, in turn, is a module over Coeff C.

2.3. Below we construct modules for finite simple conformal algebras (cf. Theo-
rem 1.11).

Example 2.3. For any ∆, α ∈ C consider the space of densities F (∆, α) =
C[t, t−1]e−αt(dt)1−∆. This is naturally a module over Vect C×; it is irreducible
whenever ∆ 6= 0.
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The formal distribution m(z) =
∑

n(tne−αt(dt)1−∆)z−n−1 spans the module
M(∆, α) over the Virasoro conformal algebra Vir with the action induced from
that of Vect C× on F (∆, α). Explicitly, Lλm = (∂z + α+ ∆λ)m. Again, whenever
∆ 6= 0, M(∆, α) is irreducible.

In fact, the following is true:

Theorem 2.4. [9] Any non-trivial irreducible finite module over the Virasoro con-
formal algebra is isomorphic to M(∆, α) with ∆ 6= 0.

Finite indecomposable modules over Vir were studied in [10]. Complete reducibil-
ity does not hold here. In fact, by classifying finite central extensions of M(∆, α),
one can arrive directly at the classification of central extensions of certain modules
over regular vector fields on C. This is an example of a connection between the
cohomology of conformal algebras [3] and the cohomology of infinite-dimensional
Lie algebras [14, 13, 18].

Example 2.5. It is easy to construct a module over a current algebra. Let A be
an algebra and U an A-module. Then CurA acts on the module Ũ = C[∂] ⊗ U
with the natural action ãλ(1⊗ u) = 1⊗ au, a ∈ A, u ∈ U .

A companion result to Theorem 2.4, also proved in [9], states that a non-trivial
irreducible finite module over Cur g for a finite-dimensional semisimple Lie algebra
g is of the form Ũ for a non-trivial irreducible finite-dimensional g-module U . We
will see below (Theorem 3.10) that an even more general result holds for associative
unital algebras: every module over such an algebra is of the form Ũ (and Ũ is
irreducible if and only if U is).

3. Cendn and gcn

3.1. Here we present the explicit constructions of the conformal algebras Cendn

and gcn.
Every conformal endomorphism of the module C[∂] is determined by the image

of ∂, thus roughly speaking, Cend1 is isomorphic to C[∂]⊗C C[∂] (where the second
component is responsible for the image and the first, for the C[∂]-module structure
of this conformal algebra). In the case of C[∂]n = C[∂]⊗Cn we have also to account
for the action of Matn(C) on Cn.

However, to get more explicit expressions, it is perhaps better to go down to the
level of coefficients.

The coefficient algebra of Cendn or gcn is the algebra Matn(D(C×)) viewed as
either an associative or Lie algebra. (Here D(M) denotes the algebra of differential
operators on M .) The formal distributions that span Cendn as a C[∂]-module (here
and further, we simply write ∂ for ∂z) are

Jm
A =

∑
n∈Z

Atn(−∂t)mz−n−1, A ∈ Matn(C),m ∈ Z≥0.

The action on C[∂]n arises from the standard action of Matn(D(C×)) on the
space Cn[t±1]. Namely, for v ∈ Cn let ṽ =

∑
n vt

nz−n−1. Then

(3.1) Jm
A λṽ = (∂ + λ)mAv.

We call this action canonical.
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Remark 3.1. We can tweak the above construction by putting

Jm
A λṽ = (∂ + λ+ α)mAv, α ∈ C.

More explicitly, we consider the action of Matn(D(C×)) on the space Cn[t±1]e−αt

and then pass to the formal distributions. Notice, though, that we still get an
action of Cendn on C[∂]n. We denote this representation Eα

n .
In fact, this action comes from the automorphism of Cendn sending the generator

J1
A to J1

A + αJ0
Id, where Id is the identity matrix.

Another way to obtain the explicit presentation of Cendn is to use the language
of differential conformal algebras (see Example 1.7). (This is more in tune with our
statement that Cend1 = C[∂]⊗C[∂].) Here we have Cendn = Diff(C[∂t]⊗Matn(C))
for the derivation ad t = [t, · ].

Actually, an easy computation shows that both explicit presentations above pro-
duce the same algebra of formal distributions; we just get two different bases, {Jm

A }
and {f̃(∂t)}. Though the formula for the action of the second basis on C[∂]n does
not look as good as (3.1), it still has merits (see below).

Remark 3.2. The coefficient algebra of gcn can be embedded into the algebra ĝl∞ (a
central extension of the algebra of infinite-dimensional matrices with finitely many
nonzero diagonals). This relation is used in the study of finite modules of gcn but
its precise nature–as well as its connection to vertex algebras–is outside the scope
of this survey.

3.2. It is clear from the construction that Cendn contains CurMatn(C), i.e. that
every simple finite conformal algebra is contained in Cendn for some n. And, for
every simple finite-dimensional Lie algebra g, Cur g embeds into gcn for some n.

The construction of Cendn (and thus gcn) also implies that gcn contains the Vi-
rasoro conformal algebra Vir. Moreover, for every α ∈ C, the conformal subalgebra
of gcn generated by Lα = J1

Id + αJ0
Id is isomorphic to Vir (cf. Remark 3.1).

It is more useful here to pass to the basis {f̃(∂t)} of gcn. In the above notation,
Lα = ∂̃t+∂1̃+α1̃. We can go further and consider the element Lα,β = ∂̃t+β∂1̃+α1̃
for any β ∈ C. The subalgebra generated by Lα,β is also isomorphic to Vir.

This gives us a family of embeddings θα,β : Vir ↪→ gc1. It is not difficult to show
that every embedding of Vir into gc1 is of this form. Moreover, a map θα,β and
the canonical gc1-action on C[∂] establish the isomorphism C[∂] 'M(1−β, α) (see
Example 2.3). Thus we have just classified all Vir modules of rank one.

Remark 3.3. A direct classification of all embeddings of Vir into gcn for an arbitrary
n would be of great interest. Among other things it would imply the classification
of Virasoro elements in gcn and the complete description of finite Vir modules.

3.3. We essentially view conformal algebras Cendn and gcn as analogs of matrix
algebras. Since the theory of finite associative algebras is much simpler than its Lie
counterpart, we should first focus on the study of Cendn. There are three directions
here: the representation theory, a purely algebraic description of Cendn (i.e. the
first cornerstone for the analog of Artin–Wedderburn), and a more detailed study of
its subalgebras. The latter approach, of course, is a dead end when ordinary matrix
algebras are concerned but we already saw that Cendn possesses some interesting
subalgebras.
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3.4. We begin by focusing on a possible analog of the Artin–Wedderburn theorem.
The biggest problem is that unlike Matn(C), Cendn is not of finite rank. This

suggests to develop a concept of growth for conformal algebras. In analogy with
the ordinary theory [25], we define the Gelfand–Kirillov dimension of a finitely-
generated conformal algebra C as
(3.2)

GKdimC = lim sup
r→∞

log rkC[∂](C[∂]-span of products of ≤ r generators of C)
log r

.

By locality all the ranks in (3.2) are finite and, since the function we consider here is
monotone, GKdimC is well defined. It possesses the standard properties: GKdim
is does not depend on the choice of the generating set, GKdim of a subalgebra or
a quotient algebra does not exceed that of the algebra, etc.

For any differential conformal algebra Diff B, GKdim Diff B = GKdimB. In
particular, GKdim Cendn = 1.

Remark 3.4. In general, for an associative conformal algebra C, GKdim Coeff C ≤
GKdimC+1 [28] and the inequality is sometimes strict (e.g. when C is torsion). It
is still an open question if the equality is always reached for a torsion-free conformal
algebra.

So far we can say that Cendn is simple, of GKdimension 1, and differential. The
latter property, however, refers to the coefficient algebra and we wish to obtain a
description of Cendn in purely conformal terms.

Mimicking the ordinary algebra, we have to start by defining unital conformal
algebras. An ordinary unital algebra contains the field (i.e. a subalgebra of di-
mension one) whose action is nonzero. The only non-trivial conformal algebra of
rank one is Cur C and, moreover, every Cur C module M splits as M = M0 ⊕M1,
where 1̃©0 = IdM1 and the action on M0 is zero (both facts are not hard to show).
Hence, we will call an associative conformal algebra C unital if it contains Cur C
and if for the resulting action of Cur C, C = C1.

The element 1̃ is called a conformal identity.

Remark 3.5. A more rigorous name would be a left conformal identity as we have
only the left action of Cur C on C. And, unlike, an ordinary (two-sided) identity, a
conformal identity is not unique.

A differential algebra Diff B can be always made unital by adjoining identity
to B. (It is still unknown if one can adjoin a conformal identity to a torsion-free
conformal algebra.) The converse is almost true.

Let the left annihilator of C be the set {a 3 C | aλC = 0}.
Theorem 3.6. [28] An associative conformal algebra C with the zero left annihi-
lator is differential, C = Diff B. Also, if C is finitely generated, then so is B.

(The main part of the proof is to show that the conformal structure of C is en-
coded by the zeroth coefficients and 1̃(1). It immediately follows that the coefficient
algebra is an Ore extension.)

Thus a simple unital conformal algebra is always differential. Utilizing the clas-
sification of algebras of GKdimension 1 [33], we can finally obtain the algebraic
description of Cendn:

Theorem 3.7. [28] A simple unital associative conformal algebra of Gelfand–
Kirillov dimension 1 is isomorphic to Cendn.
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Remark 3.8. The proof of Theorem 3.7 can be extended and yield the classification
of unital semisimple conformal algebras of GKdimension 1. Namely, such an algebra
always embeds into a direct sum of Cendn and a current algebra over a semiprime
algebra of zero or linear growth [30]. It would be very difficult to classify all such
embeddings: for instance, there exists a prime non-current subalgebra of a current
algebra of linear growth [30].

3.5. Now we turn to the representation theory of Cendn.
Just as in the case of Cur C-modules, a moduleM over a unital conformal algebra

C always splits, M = M0⊕M1. We need only to study the structure of M1. As in
the proof of Theorem 3.6, the action of 1̃ gives a certain rigidity to M1. Namely,
M1 is filtered by the submodules annihilated by 1̃©n . If C is differential, i.e.
C = Diff B (with a derivation δ), the lowest non-trivial component of this filtration
can be made into a B-module that completely determines the structure of M1.

Conversely, a (unitary) B-module V gives rise to a C-module Ṽ = C[∂]⊗V with
the action

(3.3) ãλṽ =
∑

j

∂j(δ̃j(a)v), where ṽ = 1⊗ v, v ∈ V, and a ∈ A.

Example 3.9. A finite irreducible module Eα
n over Cendn constructed in Re-

mark 3.1 has the form Eα
n = C̃n, where ∂t acts on Cn as α.

This example can be generalized by considering modules U ⊗ Cn over C[∂t] ⊗
Matn(C) with ∂t acting on U as α ∈ End(U). Thus we obtain a Cendn-module
Eα

n (U) = Ũ ⊗ Cn.

Call a C-module M unitary if M = M1. The discussion above implies that there
is a bijection between unitary C-modules and unitary B-modules. We can make
this statement more precise: consider the category RepC whose objects are unitary
C-modules and morphisms are homomorphisms that commute with a©n for every
a ∈ C, n ∈ Z≥0. Then

Theorem 3.10. [29] RepB ' RepC.

As the above equivalence is constructed explicitly, we easily deduce that irre-
ducibles correspond to irreducibles, indecomposables to indecomposables, and that
an extension of C-modules arises from an extension of corresponding B-modules.

The only concept from representation theory that does not automatically survive
is faithfulness: if Ṽ is faithful, we can only conclude that AnnV does not contain
any nonzero δ-stable ideals.

Remark 3.11. It would be more useful to define a sort of “conformal category,”
i.e. to define RepC for any conformal algebra with the morphisms also carrying a
conformal structure. So far the attempts at such definition have been unsuccessful.

Corollary 3.12. Finite irreducible Cendn-modules are of the form Eα
n . Finite

indecomposable Cendn-modules are of the form Eα
n (U) for an indecomposable α ∈

End(U).

The above result was first stated in [20]. Another proof was given in [8]. Though
more calculation-heavy, it also works for certain non-unital conformal algebras (see
below).
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3.6. Finite modules over gcn look similar to Cendn-modules; however, the classi-
fication methods here are entirely different.

We begin by constructing such modules. Since every representation of Cendn

gives rise to a representation of gcn, we already have the family Eα
n (U) of gcn-

modules (see Example 3.9).
Recall that we can also construct contragradient modules Eα

n (U)∗ (see Re-
mark 2.2).

Theorem 3.13. [20, 7] A finite irreducible gcn-module has the form Eα
n or (Eα

n )∗.

The first step of the proof is to look at certain representations of the coefficient
algebra instead. In fact, for a conformal algebra C it suffices to consider modules
over the annihilation algebra spanned by ∂ and coefficients a(n), n ≥ 0. Indeed, a
C-module M can be viewed as a module over the annihilation algebra. Conversely,
a module V over the annihilation algebra such that for each v ∈ V , a(n)v = 0 for
n� 0, gives rise to a C-module.

The annihilation algebra of gcn is the direct sum of a one-dimensional Lie algebra
and the algebra of matrices of regular differential operators on the line. Since we
are interested in finite gcn-modules here, we need to consider only modules with
finite-dimensional graded components (i.e. quasifinite). Therefore, the proof of
Theorem 3.13 comes down to classifying quasifinite modules over the Lie algebra of
regular differential operators on the line. This was achieved in [7] via the technique
developed in [21].

It can be shown that modules over the annihilation algebra of gcn are completely
reducible [22]. Thus all finite indecomposable modules over gcn are of the form
Eα

n (U) or Eα
n (U)∗.

3.7. We have already discussed the finite subalgebras of Cendn and gcn. Here we
present a continuous family of infinite subalgebras of Cendn acting irreducibly on
C[∂]n.

Let P (∂t) be a matrix in Matn(D(C×)). The formal distributions from Cendn

whose coefficients lie in Matn(D(C×))P (∂t) form a subalgebra (in fact, a left ideal)
of Cendn denoted Cendn,P . When P (∂t) is non-degenerate, the conformal algebra
Cendn,P acts irreducibly on C[∂]n.

By applying first elementary transformations to P and then conjugating Cendn,P ,
we arrive at an isomorphic subalgebra for P = diag(p1(∂t), . . . , pn(∂t)), where
pi(∂t) 6= 0 are monic and pi|pi+1. Such pi’s are called elementary divisors. There-
fore, we obtain a family of non-isomorphic subalgebras of Cendn that act irreducibly
on C[∂] and is parametrized by sequences of elementary divisors.

Conjecture 3.14. [20]1 A subalgebra of Cendn that acts irreducibly on the standard
module C[∂]n is conjugate to either CurMatn(C) or Cendn,P for a non-degenerate
P .

That all such finite subalgebras are conjugate to CurMatn(C) can be deduced
from the conformal Cartan–Jacobson theorem [11].

Another particular case of the conjecture is its restriction to unital subalgebras;
here the result follows from Theorem 3.7.

1Added in proof. Recently P. Kolesnikov has announced a proof of this conjecture; details are

forthcoming.
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It is possible to relax the definition of unitality and consider associative conformal
algebras that contain Cur C (in this case 1̃ is called a conformal idempotent). For
such algebras, the conjecture also holds [36].

However, for arbitrary subalgebras, the only settled case is n = 1. Moreover,
here one can classify all subalgebras of Cend1 by carefully investigating subalgebra
elements of minimal degree (with respect to both bases {Jm} and {f̃(∂t)}), similar
to the classical proof that the algebra C[x] is principal [8].

3.8. One of the crucial observations of [8] is that for an associative algebra C and
an irreducible C-module M , M ' C−∂−λm|λ=α for some m ∈ M,α ∈ C. Thus
we obtain a surjective map from the set of maximal left ideals of C to the set of
non-trivial irreducible C-modules (taken up to isomorphism). Hence,

Theorem 3.15. [8] A finite irreducible Cendn,P -module is isomorphic to Eα
n .

However, the category of representations of Cendn,P is very different from that of
Cendn; it is actually wild for P of high degree [16]. This can be seen by constructing
the ext-quiver (adapted to conformal algebras) for the finite-dimensional extensions
of irreducible Cendn,P -modules classified in [8].

Remark 3.16. If one could define a conformal category (i.e. a category of conformal
objects, where morphism carry a conformal structure as well, see Remark 3.11),
then perhaps representations of Cendn,P could be described as a deformation of
RepCendn. Moreover, an analog of the density theorem for endomorphisms in
such a category might help in solving Conjecture 3.14.

3.9. Above we passed from Cendn to its subalgebras Cendn,P . In the Lie case, we
go from gcn to gcn,P (either by introducing the Lie bracket on Cendn,P or by also
considering the subalgebra of formal distributions of gcn with coefficients divisible
on the right by P ). Thus, we obtain subalgebras of gcn acting irreducibly on C[∂]n.

But there is more. Since gcn is simple, it can be viewed as both the analog of
gln and sln. What about analogs of other simple Lie algebras? In particular, what
are orthogonal and symplectic conformal Lie algebras?

Consider an anti-involution ∗ on D(C×): ∂∗t = −∂t, t
∗ = t. It can be extended

to Matn(C) ⊗ D(C×) by applying ∗ to the second component and a matrix anti-
involution to the first. This gives us an anti-involution of Cendn.

Theorem 3.17. [8] Up to conjugation, all anti-involutions of Cendn are of this
form.

We continue mimicking the constructions of orthogonal and symplectic Lie al-
gebras. Let σ be an anti-involution on Cendn that arises from a symmetric (resp.
skew-symmetric) involution of Matn(C). The fixed points of −σ form the orthogo-
nal conformal algebra ocn (resp. symplectic conformal algebra spcn). As gcn, both
ocn and spcn are simple.

We can go further and define orthogonal and symplectic subalgebras ocn,P and
spcn,P of gcn,P . However, this can be done only for hermitian and anti-hermitian
P ’s respectively.

Remark 3.18. There exists another construction of ocn and spcn that is more
representation-theoretic in spirit. Here we begin by defining a conformal form
on a C[∂]-module V : 〈 , 〉λ : V ⊗ V → C[λ]. The form is bilinear if

〈∂v,w〉λ = −λ〈v, w〉λ = −〈v, ∂w〉λ, v, w ∈ V
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and symmetric (resp. skew-symmetric) if 〈v, w〉λ = 〈w, v〉−λ (resp. −〈w, v〉−λ).
If V is free over C[∂], the form is completely determined by its action on the

basis {ei}, i.e. by a matrix P (λ) with entries 〈ei, ej〉λ.
A conformal bilinear form gives rise to a map V → V ∗, which establishes an

isomorphism between V and P (−∂)V ∗ (for a non-degenerate P ).
Thus, though we can not define adjoints with respect to a given form for all oper-

ators in Cendn, there is a well-defined adjoint for elements of Cendn,P . (The details
here are rather involved, see [8].) Elements that are skew-symmetric with respect
to taking the adjoint form up the Lie conformal algebra ocn,P (if the corresponding
form is symmetric) or spcn,P (resp. skew-symmetric).

As a companion to Conjecture 3.14, we have

Conjecture 3.19. [35, 8] An infinite subalgebra of gcn that acts irreducibly on the
standard module C[∂]n is conjugate to either gcn,P , ocn,P , or spcn,P for a non-
degenerate P (if defined).

Remark 3.20. The classification of finite subalgebras of gcn acting irreducibly on
C[∂]n is contained in [11].

Remark 3.21. It is worth to emphasize that here we get only the analogs of classical
series An, Bn, Cn, and Dn (though the series are not discrete). There is no place
for exceptional Lie conformal algebras in this conjecture.

And indeed, so far all attempts to construct such by the analogs of ordinary
methods (Tits–Kantor–Koecher construction, sums of representations of algebras
of small rank, etc.) have failed.

The existing evidence for this conjecture covers several important cases. In all
cases we assume a presence of an important finite subalgebra:
• [36] If C is a simple Lie conformal algebra that has a faithful finite represen-

tation and such that C ⊃ Cur sl2, then C is one of the subalgebras from Conjec-
ture 3.19.
• [12] If C is a subalgebra of gcn that acts irreducibly on C[∂]n and is fixed by

the action of L©n , n = 0, 1, 2, for the Virasoro element L = ∂̃t + α∂1̃, then C is
one of the subalgebras from Conjecture 3.19.

Remark 3.22. The second statement above can be reformulated: the (centerless)
Virasoro Lie algebra contains an sl2 spanned by L−1, L0, and L1. A subalgebra
fixed by this sl2 and acting irreducibly on C[∂] is from Conjecture 3.19.

Finally, as far as the study of representations of infinite subalgebras of gcn goes,
only few inroads have been made: [7] has the classification of finite representations
of subalgebras of gc1 containing a Virasoro subalgebra but this is all.

4. Future Developments

4.1. We restate here Conjectures 3.14 and 3.19:

Conjecture 4.1. Let C be an infinite conformal algebra that acts faithfully and
irreducibly on C[∂]. Then

• if C is associative, it is isomorphic to Cendn,P ;
• if C is Lie, it is isomorphic to either gcn,P , ocn,P , or spcn,P .
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It is well known that any study of infinite-dimensional Lie algebras of linear
growth is in general hopeless; fortunately, there is a natural subclass of affine al-
gebras that gives us a controllable rich theory. Since these algebras are finite from
the conformal point of view, the subalgebras of gcn (or, rather, their coefficients)
form a good class of algebras of quadratic growth.

More generally, one should study finite subalgebras of gcn as well: this may lead,
for instance, to the classification of Virasoro elements (see Remark 3.3) and other
important results.

In view of Theorem 3.7 and its generalization in [36], we also propose a general-
ization of Conjecture 3.14:

Conjecture 4.2. Let C be a simple associative algebra of Gelfand–Kirillov dimen-
sion 1. Then C is isomorphic to Cendn,P for some n and P .

4.2. A closely related issue is the study of representations of Cendn,P , gcn,P , ocn,P

and spcn,P .
We have already mentioned in Remarks 3.11 and 3.16 that the best strategy

here might be to define a conformal category with the space of morphisms carrying
a conformal structure and then describe this category in terms of some equivalent
data. Though successful for unital conformal algebras (see Theorem 3.10), this
task is very hard in general. This is not the only obstacle for such a project. For
instance, as mentioned above, there is no bijection between the set of maximal left
ideals and irreducible modules–i.e. even if one could define a “conformal kernel,”
it would yield less information than its ordinary analog.

In the Lie case, these questions are closely related to the study of representations
of ĝl∞ and its subalgebras. This is a very important subject for infinite-dimensional
representation theory and hopefully, the use of conformal language can move it
further.

4.3. Representations of Lie algebras are a source for a lot of combinatorics. What
about their conformal counterparts?

The study of subalgebras of gcn that are normalized by the sl2 part of a Vi-
rasoro element (see Remark 3.22) produced a surprising connection with classical
Jacobi polynomials [12]. This seems to be the only deep combinatorial result in the
conformal algebra field but we can hope for more: for instance, character formulas
for gcn (and, for that matter a good definition of “conformal” characters) and its
subalgebras should turn out very interesting from the combinatorial point of view.

4.4. Finally, we should mention a generalization of conformal algebras.
It is clear that instead of C[∂]-modules in Definition 1.1 we can consider modules

over C[∂1, . . . , ∂k] (and take n in ©n to be a multiindex). A more involved procedure
allow us to endow modules over any cocommutative Hopf algebra with a conformal-
like structure. Such objects are called pseudoalgebras.

So far we have the classification of finite pseudoalgebras, the beginnings of rep-
resentation theory (both in [1]), and the theory of unital pseudoalgebras [29]. It
should be mentioned that simple finite Lie pseudoalgebras arise from either affine
algebras or algebras of Cartan type (of any GK dimension), so in a sense this the-
ory unifies the Kac–Moody and the Cartan type sides of infinite-dimensional Lie
algebras, cf. Remark 1.12. As far as infinite pseudoalgebras are concerned, some
results in [29] (for the associative case only) suggest that their theory is rich and
manageable. These objects should be given more attention.
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[5] L. A. Bokut, Y. Fong, W.-F. Ke, Gröbner-Shirshov bases and composition lemma for asso-
ciative conformal algebras: an example, in Combinatorial and computational algebra (Hong

Kong, 1999), Contemp. Math. 264, AMS, Providence, RI, 2000, 63–90.

[6] R. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci.
USA 83 (1986), 3068–3071.

[7] C. Boyallian, V. G. Kac, J. Liberati, Finite growth representations of infinite Lie conformal

algebras, J. Math. Phys. 44 (2003), 754–770.
[8] C. Boyallian, V. G. Kac, J. Liberati, On the classification of subalgebras of CendN and gcN ,

J. Algebra 260 (2003), 32–63.
[9] S.-J. Cheng, V. G. Kac, Conformal modules, Asian J. Math. 1 (1997), 181–193, Erratum,

Asian J. Math 2 (1998), 153–156.

[10] S.-J. Cheng, V. G. Kac, M. Wakimoto, Extensions of conformal modules, in Topological field
theory, primitive forms, and related topics (Kyoto, 1996), Progr. Math. 160, Birkhäuser,
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