Applied Algebra, MAT312/AMS351

Practice Problems for Midterm II

(1) Let $R=\{(a, b) \mid a \equiv b \bmod 5\}$ be a subset of $\mathbb{Z} \times \mathbb{Z}$. Prove or disprove that $a R b$ is an equivalence relation on \mathbb{Z}.
(2) Let $\pi=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 7 & 3 & 1 & 5\end{array}\right)$ and $\sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 5 & 1 & 4 & 2 & 7\end{array}\right)$. Compute $\pi \sigma, \pi^{-1}$. Determine orders and signs of π and σ.
(3) Prove that for any permutation π, the permutation $\pi^{-1}(12) \pi$ is a transposition.
(4) Leat a, b be elements of a group G. Solve equations $a^{-1} x=b$ and $x a^{-1} b=e$.
(5) Let G be a group such that for any two elements a, b in $G,(a b)^{2}=a^{2} b^{2}$. Prove that G is abelian.
(6) Let G be a group. Define the relation of conjugacy on G : $a R b$ if and only if there exists $g \in G$ such that $b=g^{-1} a g$. Prove that this is an equivalence relation.
(7) Compute orders of the following elements of the group $\left(\mathbb{C}^{\times}, \cdot\right): 3 i, \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$.
(8) For a matrix A denote its transpose by A^{t}. A is orthogonal if $A^{-1}=A^{t}$ (A^{t} means the transpose of A). Prove that the set of invertible orthogonal $n \times n$ matrices is a subgroup of $G L(n, \mathbb{R})$. (Hints: First recall - or deduce - that $(A B)^{t}=B^{t} A^{t}$ and $\left.\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}.\right)$
(9) Let R be a commutative ring such that $1+1=0$. Prove that for any $x, y \in R,(x+y)^{2}=x^{2}+y^{2}$.
(10) Prove that the subset $\{a+b j \mid a, b \in \mathbb{R}\}$ of \mathbb{H} is a field.

