Applied Algebra, MAT312/AMS351 Practice Problems for Midterm II

- (1) Let $R = \{(a, b) \mid a \equiv b \mod 5\}$ be a subset of $\mathbb{Z} \times \mathbb{Z}$. Prove or disprove
- (1) Let $\pi = \{(a, b) + a \ge b \text{ inder } 0\}$ be a basis of a 2 field 1 for $a \ge b \ge a$ that aRb is an equivalence relation on \mathbb{Z} . (2) Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 7 & 3 & 1 & 5 \end{pmatrix}$ and $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 5 & 1 & 4 & 2 & 7 \end{pmatrix}$. Compute $\pi\sigma$, π^{-1} . Determine orders and signs of π and σ .
- (3) Prove that for any permutation π , the permutation $\pi^{-1}(12)\pi$ is a transposition.
- (4) Let a, b be elements of a group G. Solve equations $a^{-1}x = b$ and $xa^{-1}b = e$.
- (5) Let G be a group such that for any two elements a, b in G, $(ab)^2 = a^2b^2$. Prove that G is abelian.
- (6) Let G be a group. Define the relation of *conjugacy* on G: aRb if and only if there exists $g \in G$ such that $b = g^{-1}ag$. Prove that this is an equivalence relation.
- (7) Compute orders of the following elements of the group (C[×], ·): 3i, √2/2 + √2/2 i.
 (8) For a matrix A denote its transpose by A^t. A is orthogonal if A⁻¹ = A^t $(A^t \text{ means the transpose of } A)$. Prove that the set of invertible orthogonal $n \times n$ matrices is a subgroup of $GL(n, \mathbb{R})$. (*Hints:* First recall – or deduce - that $(AB)^t = B^t A^t$ and $(A^{-1})^t = (A^t)^{-1}$.
- (9) Let R be a commutative ring such that 1 + 1 = 0. Prove that for any $x, y \in R, (x + y)^2 = x^2 + y^2.$
- (10) Prove that the subset $\{a + bj | a, b \in \mathbb{R}\}$ of \mathbb{H} is a field.