MAT126.R01: QUIZ 9

SOLUTIONS

Find the volume of the solid obtained by rotating the region bounded by the curves

$$
y=x^{3}, \quad x=0, \quad y=1
$$

about $y=2$.
(Sketch the region first.)
Intersection points: $x=0$ and $y=x^{3}$ intersect at the origin. $y=1$ and $y=x^{3}$ intersect when $x^{3}=1$, i.e. at $x=1$.

Since the region is "below" the axis of revolution, the inner shell is formed by $y=1$ and the outer shell by $y=x^{3}$.

The volume is $\int_{0}^{1} \pi\left(\left(x^{3}-2\right)^{2}-(1-2)^{2}\right) d x=\pi \int_{0}^{1} x^{6}-2 x^{3}+4-1 d x=$ $\left.\pi\left(\frac{x^{7}}{7}-2 \frac{x^{4}}{4}+3 x\right)\right|_{0} ^{1}=\pi\left(\frac{1}{7}-2 \frac{1}{4}+3-0\right)=\frac{37 \pi}{17}$

