MAT126.R02: QUIZ 8

SOLUTIONS

Find the volume of the solid obtained by rotating the region bounded by the curves

$$
y=x^{3}, \quad x=0, \quad y=1
$$

about $x=2$.
(Sketch the region first.)
The axis of revolution is vertical, so we need to rewrite the curves in terms of y :

$$
x=\sqrt[3]{y}, \quad x=0, \quad y=1
$$

Intersection points: $x=0$ and $x=\sqrt[3]{y}$ intersect at the origin. $y=1$ and $x=\sqrt[3]{y}$ intersect when $y=1$.

Since the region is "below" the axis of revolution, the inner shell is formed by $x=\sqrt[3]{y}$ and the outer shell by $x=0$.

The volume is $\int_{0}^{1} \pi\left((0-2)^{2}-(\sqrt[3]{y}-2)^{2}\right) d y=\pi \int_{0}^{1} 4-\left(y^{2 / 3}-4 y^{1 / 3}+4\right) d y=$ $\left.\pi\left(-\frac{y^{5 / 3}}{5 / 3}+4 \frac{y^{4 / 3}}{4 / 3}\right)\right|_{0} ^{1}=\pi\left(-\frac{1}{5 / 3}+4 \frac{1}{4 / 3}\right)=\frac{12 \pi}{5}$

