MAT126.R01: QUIZ 8

SOLUTIONS

Find the area of the region bounded by the curves

$$
y=x^{3}-2 x, \quad y=x^{2} .
$$

(Draw the region first.)
Intersection points: $x^{3}-2 x=x^{2}$
$x^{3}-x^{2}-2 x=0$
$x\left(x^{2}-x-2\right)=0$
Either $x=0$ or $x^{2}-x-2=0$. The second equation has solutions $x=-1,2$.

So, the intersection points are at $x=-1,0,2$
Between -1 and 0, $y=x^{3}-2 x$ is above $y=x^{2}$ (check their relative positions for, say, $x=-1 / 2$). Between 0 and 2, $y=x^{2}$ is above.

The area is $\int_{-1}^{0} x^{3}-2 x-x^{2} d x+\int_{0}^{2} x^{2}-\left(x^{3}-2 x\right) d x=\left.\left(\frac{x^{4}}{4}-x^{2}-\frac{x^{3}}{3}\right)\right|_{-1} ^{0}+$
$\left.\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}+x^{2}\right)\right|_{0} ^{2}=\left(0-\frac{1}{4}+1-\frac{1}{3}\right)+\left(\frac{8}{3}-\frac{16}{4}+4-0\right)=\frac{47}{12}$

