MAT126.R02: QUIZ 7

SOLUTIONS

Let $f(x)=\frac{2}{x^{3}}$ if $x \geq 1$ and $f(x)=0$ if $x<1$.
(a) Verify that $f(x)$ is a probability density function.
(1) $f(x)$ is integrable because it is continuous everywhere except at $x=1$ and has a jump discontinuity at $x=1$;
(2) $f(x)$ is non-negative because $2 / x^{3}$ is positive for all $x \geq 1$.
(3) $\int_{-\infty}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{2}{x^{3}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{2}{x^{3}} d x=\left.\lim _{t \rightarrow \infty} 2 \frac{x^{-2}}{-2}\right|_{1} ^{t}=\lim _{t \rightarrow \infty}-t^{-2}-\left(-(1)^{-} 2\right)=1$
(b) Find $P(1 \leq X \leq 2)$.

$$
P(1 \leq X \leq 2)=\int_{1}^{2} f(x) d x=\int_{1}^{2} \frac{2}{x^{3}} d x=\left.2 \frac{x^{-2}}{-2}\right|_{1} ^{2}=-(2)^{-2}-\left(-(1)^{-2}\right)=-\frac{1}{4}+1=\frac{3}{4}
$$

