MAT126.R02: QUIZ 7

SOLUTIONS

Let
$$f(x) = \frac{2}{x^3}$$
 if $x \ge 1$ and $f(x) = 0$ if $x < 1$.
(a) Verify that $f(x)$ is a probability density function.
(1) $f(x)$ is integrable because it is continuous everywhere except at $x = 1$
and has a jump discontinuity at $x = 1$;
(2) $f(x)$ is non-negative because $2/x^3$ is positive for all $x \ge 1$.
(3) $\int_{-\infty}^{\infty} f(x)dx = \int_{1}^{\infty} \frac{2}{x^3}dx = \lim_{t \to \infty} \int_{1}^{t} \frac{2}{x^3}dx = \lim_{t \to \infty} 2\frac{x^{-2}}{-2}\Big|_{1}^{t} = \lim_{t \to \infty} -t^{-2} - (-(1)^{-2}) = 1$
(b) Find $P(1 \le X \le 2)$.
 $P(1 \le X \le 2) = \int_{1}^{2} f(x)dx = \int_{1}^{2} \frac{2}{x^3}dx = 2\frac{x^{-2}}{-2}\Big|_{1}^{2} = -(2)^{-2} - (-(1)^{-2}) = -\frac{1}{4} + 1 = \frac{3}{4}$