MAT126.R02: QUIZ 6

SOLUTIONS

Find the are of the region enclosed by the curves

$$
y=\frac{1}{x+1}, \quad y=x^{2}+1, \quad x=3 .
$$

(Draw the region first.)
The region is depicted below:

The right boundary of the region is given by $x=3$.
The left boundary should be the intersection point between the two graphs.

This can be found either by realizing that $x^{2}+1=\frac{1}{x+1}$ when $x=0$ or by solving the algebraic equation
$x^{2}+1=\frac{1}{x+1}$
Then $\left(x^{2}+1\right)(x+1)=1, x^{3}+x^{2}+x+1=1, x^{3}+x^{2}+x=0$, $x\left(x^{2}+x+1\right)=0$, that is $x=0$.

The graph of $y=x^{2}+1$ is above the graph of $y=\frac{1}{x+1}$ between 0 and 3 . This can be either observed from the sketch of the region or by checking the values of both functions at any point between 0 and 3 (for instance, $x=1$).

Thus the area is
$\int_{0}^{3} x^{2}+1-\frac{1}{x+1} d x=\int_{0}^{3} x^{2}+1 d x-\int_{0}^{3} \frac{1}{x+1} d x$
The first integral computes as $\frac{x^{3}}{3}+\left.x\right|_{0} ^{3}=\frac{3^{3}}{3}+3=12$
The second intergral is $\int_{0}^{3} \frac{1}{x+1} d x=\int_{1}^{4} \frac{1}{u} d u=\left.\ln u\right|_{1} ^{4}=\ln 4-\ln 1=\ln 4$
(here we use the substitution $u=x+1, d u=d x$)
Answer: $12-\ln 4$.

