MAT126.R02: QUIZ 5

SOLUTIONS

Consider the integral $\int_{1}^{5} x \ln x d x$.

1. Use the trapezoidal rule with $n=4$ to approximate this integral.
$\Delta x=\frac{4-1}{4}=1$
Endpoints: $1,1+1=2,2+1=3,3+1=4,5$.
$T_{4}=\frac{1}{2}(f(1)+f(2)+f(3)+f(4)+f(5))=$
$\frac{1}{2}(1 \ln 1+2 \ln 2+3 \ln 3+4 \ln 4+5 \ln 5)=\frac{2 \ln 2+3 \ln 3+4 \ln 4+5 \ln 5}{2}$
2. How large do we have to choose n to guarantee that the trapezoidal rule approximation of this integral is accurate to within 0.1 ?

The error E_{T} is bounded by $\frac{K(b-a)^{3}}{12 n^{2}}$, where K is a bound for the second derivative of $f(x)$.
$f^{\prime \prime}(x)=(x \ln x)^{\prime \prime}=\left(\ln x+x \frac{1}{x}\right)^{\prime}=(\ln x+1)^{\prime}=\frac{1}{x}$
On the interval $[1,5] \frac{1}{x}$ is bounded by $\frac{1}{1}$
$\frac{K(b-a)^{3}}{12 n^{2}}=\frac{1(5-1)^{3}}{12 n^{2}}=\frac{4^{3}}{12 n^{2}}=\frac{16}{3 n^{2}}$
If $\frac{16}{3 n^{2}}<0.1, n^{2}>\frac{16}{3(0.1)}=\frac{160}{3}$
Hence $n>\sqrt{\frac{160}{3}}$.

