MAT126.R01: QUIZ 2

SOLUTIONS

Let
$$f(x) = 2x$$
.
Let $g(x)$ be a function such that $\int_0^5 g(x) \, dx = 8$ and $\int_3^5 g(x) \, dx = 1$.
(a) Compute $\int_0^3 f(x) \, dx$

This integral is the area of the region between the graph of f(x) = 2x and the x-axis. The region is a triangle with the base 3 - 0 = 3 and the height 2(3) - 2(0) = 6. Therefore its area is $\frac{3 \cdot 6}{2} = 9$.

(b) Compute
$$\int_0^3 g(x) dx$$

Since $\int_0^5 g(x) dx = \int_0^3 g(x) dx + \int_3^5 g(x) dx$, we have that $\int_0^3 g(x) dx = \int_0^5 g(x) dx - \int_3^5 g(x) dx = 8 - 1 = 7$.
(c) Compute $\int_0^3 2f(x) + g(x) dx$
 $\int_0^3 2f(x) + g(x) dx = 2\int_0^3 f(x) dx + \int_0^3 g(x) dx = 2(9) + 7 = 25$.