MAT126.R02: QUIZ 1

SOLUTIONS

1. Find the expression for the area under the graph of

$$
f(x)=x^{3}+\cos x
$$

from $x=1$ to $x=3$. Do not evaluate the formula you obtain.
The area is the limit of $R_{n}=\Delta x\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right)=\Delta x\left(\left(x_{1}^{3}+\cos x_{1}\right)+\right.$ $\left.\cdots+\left(x_{n}^{3}+\cos x_{n}\right)\right)$

Here $\Delta x=\frac{3-1}{n}=\frac{2}{n}$ and $x_{k}=1+\frac{2}{n} k=1+\frac{2 k}{n}$.
Hence the area is $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2}{n}\left[\left(1+\frac{2 k}{n}\right)^{3}+\cos \left(1+\frac{2 k}{n}\right)\right]$.
2. Determine the region whose area is equal to the given expression:

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{3}{n} \ln \left(7+\frac{3 k}{n}\right) .
$$

Do not evaluate the limit.
Here $\Delta x=\frac{3}{n}, x_{k}=7+\frac{3 k}{n}$, and $f\left(x_{k}\right)=\ln \left(7+\frac{3 k}{n}\right)$.
Since $\Delta x=\frac{b-a}{n}$ and $x_{k}=a+k \Delta x$, we see that $a=7$ and $b-a=3$. This makes $b=10$.

The function $f(x)$ is $\ln x$.
Therefore the region is under the graph of $f(x)=\ln x$ from $x=3$ to $x=10$.

