MAT126.R02: QUIZ 0

SOLUTIONS

If you could not even start on any of the derivatives in problem 4, you should seriously consider dropping this course.

1.
$$\ln(\cos \pi) = \ln(-1)$$
, does not exist.
2. Solve for $x: 2^{x^2+2x} = 8$
 $2^{x^2+2x} = 2^3$
 $x^2 + 2x = 3$
 $x^2 + 2x - 3 = 0$
 $(x + 3)(x - 1) = 0$
 $x = -3, 1$
3. (a) $\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 0} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} x + 3 = 3 + 3 = 6$
(b) $\lim_{x \to 0} \frac{x^2 - 9}{x - 3} = \lim_{x \to 0} \frac{0^2 - 9}{0 - 3} = \frac{-9}{-3} = 3$
4. Differentiate the following functions:
(a) $(\ln \cos x)' = \frac{1}{\cos x}(-\sin x) = -\frac{\sin x}{\cos x} = -\tan x$
using the chain rule: $u = \cos x$, $(\ln u)' = 1/u$, $(\cos x)' = -\sin x$.
(b) $\left(\frac{e^t}{t}\right)' = \frac{(e^t)'t - e^t(t)'}{t^2} = \frac{e^t t - e^t}{t^2} = e^t \frac{t - 1}{t^2}$
using the quotient rule
(c) $(\sqrt[3]{w + 1} + \sqrt[3]{w - 1})' = ((w + 1)^{1/3} + (w - 1)^{1/3})' = \frac{1}{3}(w + 1)^{-2/3} + \frac{1}{3}(w - 1)^{-2/3} = \frac{1}{3}\left(\frac{1}{\sqrt[3]{(w + 1)^2}} + \frac{1}{\sqrt[3]{(w - 1)^2}}\right)$
5. Compute $\int_{-\pi}^{\pi} x \cos x \, dx$
 $x \cos x \text{ is an odd function $(f(-x) = -f(x))$, so $\int_{-\pi}^{0} x \cos x \, dx = -\int_{0}^{\pi} x \cos x \, dx$,
as the values of the function over the two intervals of integration are the op-$

posites of each other. Hence the integral from $-\pi$ to π is zero.