MAT126.R02: QUIZ 0

SOLUTIONS

If you could not even start on any of the derivatives in problem 4, you should seriously consider dropping this course.

1. $\ln (\cos \pi)=\ln (-1)$, does not exist.
2. Solve for $x: 2^{x^{2}+2 x}=8$
$2^{x^{2}+2 x}=2^{3}$
$x^{2}+2 x=3$
$x^{2}+2 x-3=0$
$(x+3)(x-1)=0$
$x=-3,1$
3. (a) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3} x+3=3+3=6$
(b) $\lim _{x \rightarrow 0} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 0} \frac{0^{2}-9}{0-3}=\frac{-9}{-3}=3$
4. Differentiate the following functions:
(a) $(\ln \cos x)^{\prime}=\frac{1}{\cos x}(-\sin x)=-\frac{\sin x}{\cos x}=-\tan x$ using the chain rule: $u=\cos x,(\ln u)^{\prime}=1 / u,(\cos x)^{\prime}=-\sin x$.
(b) $\left(\frac{e^{t}}{t}\right)^{\prime}=\frac{\left(e^{t}\right)^{\prime} t-e^{t}(t)^{\prime}}{t^{2}}=\frac{e^{t} t-e^{t}}{t^{2}}=e^{t} \frac{t-1}{t^{2}}$
using the quotient rule
(c) $(\sqrt[3]{w+1}+\sqrt[3]{w-1})^{\prime}=\left((w+1)^{1 / 3}+(w-1)^{1 / 3}\right)^{\prime}=\frac{1}{3}(w+1)^{-2 / 3}+$ $\frac{1}{3}(w-1)^{-2 / 3}=\frac{1}{3}\left(\frac{1}{\sqrt[3]{(w+1)^{2}}}+\frac{1}{\sqrt[3]{(w-1)^{2}}}\right)$
5. Compute $\int_{-\pi}^{\pi} x \cos x d x$
$x \cos x$ is an odd function $(f(-x)=-f(x))$, so $\int_{-\pi}^{0} x \cos x d x=-\int_{0}^{\pi} x \cos x d x$,
as the values of the function over the two intervals of integration are the opposites of each other. Hence the intergral from $-\pi$ to π is zero.
