MAT126.R01: QUIZ 0

SOLUTIONS

If you could not even start on any of the derivatives in problem 4, you should seriously consider dropping this course.

1. $\ln \left(\sin \frac{\pi}{2}\right)=\ln (1)=0$
2. Solve for $x: 3^{x^{2}+x}=9$
$3^{x^{2}+x}=3^{2}$
$x^{2}+x=2$
$x^{2}+x-2=0$
$(x+2)(x-1)=0$
$x=-2,1$
3. (a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2} x+2=2+2=4$
(b) $\lim _{x \rightarrow 0} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 0} \frac{0^{2}-4}{0-2}=\frac{-4}{-2}=2$
4. Differentiate the following functions:
(a) $\left(e^{\sin x}\right)^{\prime}=e^{\sin x} \cos x$
using the chain rule with $u=\sin x,\left(e^{u}\right)^{\prime}=e^{u},(\sin x)^{\prime}=\cos x$
(b) $\left(t^{5} \ln t\right)^{\prime}=\left(t^{5}\right)^{\prime} \ln t+t^{5}(\ln t)^{\prime}=5 t^{4} \ln t+t^{5} \frac{1}{t}=5 t^{4} \ln t+t^{4}=$ $(5 \ln t+1) t^{4}$
(using product rule)
(c) $(\sqrt[3]{w+1}+\sqrt[3]{w-1})^{\prime}=\left((w+1)^{1 / 3}+(w-1)^{1 / 3}\right)^{\prime}=\frac{1}{3}(w+1)^{-2 / 3}+$ $\frac{1}{3}(w-1)^{-2 / 3}=\frac{1}{3}\left(\frac{1}{\sqrt[3]{(w+1)^{2}}}+\frac{1}{\sqrt[3]{(w-1)^{2}}}\right)$
5. Compute $\int_{-\pi}^{\pi} x \cos x d x$
$x \cos x$ is an odd function $(f(-x)=-f(x))$, so $\int_{-\pi}^{0} x \cos x d x=-\int_{0}^{\pi} x \cos x d x$,
as the values of the function over the two intervals of integration are the opposites of each other. Hence the intergral from $-\pi$ to π is zero.
